
CASPER Toolflow
Release 0.1

Collaboration for Astronomy Signal Processing and Electronics Research

Oct 19, 2020

Setup

1 What is mlib_devel? 3

2 Using mlib_devel 5

3 Updating an Existing Toolflow Installation 7

4 mlib_devel directory structure 9

Python Module Index 181

Index 183

i

ii

CASPER Toolflow, Release 0.1

Welcome to the documentation for mlib_devel, the CASPER Toolflow!

Setup 1

CASPER Toolflow, Release 0.1

2 Setup

CHAPTER 1

What is mlib_devel?

The mlib_devel repository contains a set of FPGA DSP libraries and programming tools developed and maintained
by the Collaboration for Astronomical Signal Processing and Electronics Research (CASPER). Within the collabora-
tion, this collection of software is affectionately referred to as The Toolflow.

The CASPER toolflow allows you to generate signal processing designs using MATLAB’s graphical programming
tool Simulink. These designs can be turned into FPGA bitstreams and loaded onto a variety of supported hardware
platforms to perform real-time digital signal processing systems. CASPER also provides a Python software library for
interacting with running designs: casperfpga.

3

http://casper.berkeley.edu/
https://github.com/casper-astro/casperfpga

CASPER Toolflow, Release 0.1

4 Chapter 1. What is mlib_devel?

CHAPTER 2

Using mlib_devel

For more information about installing and using the CASPER Toolflow, see the project’s documentation.

CASPER also maintain a set of tutorials, designed to introduce new users to the toolflow.

5

https://casper-toolflow.readthedocs.io
https://casper-tutorials.readthedocs.io

CASPER Toolflow, Release 0.1

6 Chapter 2. Using mlib_devel

CHAPTER 3

Updating an Existing Toolflow Installation

You can always update your installation of mlib_devel by pulling updated code from this repository. If you do this,
chances are you’ll need to update your Simulink models to match your new mlib_devel libraries. A script is provided
to automate this process. With your model open and active, in your MATLAB prompt, run

update_casper_blocks(bdroot)

This script will resynchronize every CASPER block in your design with its latest library version. Depending on the
size of your model, it may take many minutes to complete! As always, back up your designs before attempting such a
major operation. And, if you experience problems, please raise Github issues!

7

CASPER Toolflow, Release 0.1

8 Chapter 3. Updating an Existing Toolflow Installation

CHAPTER 4

mlib_devel directory structure

casper_library Simulink DSP libraries

xps_library Simulink libraries for tool-flow supported modules (ADC interfaces, Ethernet cores, etc.)

xps_base HDL code and Xilinx EDK wrappers used in older (ROACH2 and earlier) versions of the toolflow.

docs Sphinx documentation for the software in this project.

jasper_library Python and MATLAB scripts required to drive the compilation process. Also platform-dependent
configuration information and source-code for IP modules used by the toolflow in the following directories.

platforms YAML files defining the compile parameters and physical constraints of CASPER-supported FPGA
platforms.

golden Golden boot images for FPGA platforms which require them.

hdl_sources HDL source files for all toolflow-suppled modules (eg. ADC interfaces, Ethernet cores, etc.).

sw Codebase for embedded software processors used by the toolflow

yellow_blocks Python classes for each yellow block in the simulink xps_library.

4.1 Setup

The software stack you will require to use the toolflow will depend what hardware you are targeting. Older hardware
(ROACH2 and earlier) use the older Xilinx software (ISE) which forces the use of different tools.

The current compatibility matrix is below:

(Note that official support for ROACH plaforms is no longer provided, however this version of mlib_devel contains all
ROACH related documentation and ROACH tutorials can be found here)

9

https://casper-toolflow.readthedocs.io
https://github.com/casper-astro/mlib_devel/tree/d77999047d2f0dc53e1c1e6e516e6ef3cdd45632/docs
https://casper-tutorials.readthedocs.io/en/latest/tutorials/roach/tut_intro.html

CASPER Toolflow, Release 0.1

Hard-
ware

Operating Sys-
tem

Matlab Ver-
sion

Xilinx Ver-
sion

mlib_devel branch /
commit

Python Ver-
sion

ROACH1/2 Ubuntu 14.04 2013b ISE 14.7 branch: roach Python 2.7
SKARAB Ubuntu 16.04 2018a Vivado

2019.1.1
branch: master Python 3

SNAP Ubuntu 16.04 2018a Vivado
2019.1.1

branch: master Python 3

Red
Pitaya

Ubuntu 16.04 2018a Vivado
2019.1.1

branch: master Python 3

VCU118 Ubuntu 16.04 2018a Vivado
2019.1.1

branch: master Python 3

VCU128 Ubuntu 16.04 2018a Vivado
2019.1.1

branch: master Python 3

ZCU111 Ubuntu 16.04 2018a Vivado
2019.1.1

branch: master Python 3

SNAP2 Ubuntu 16.04 2016b Vivado 2016.4 branch: master Python 3

The recommended OS is Ubuntu as it is what the majority of the collaboration are using. This makes it easier for us
to support you. If you are so inclined, you could also use Red Hat, but we definitely do not support Windows. You are
welcome to try but you will be on your own. You could always run Linux in a VM although this will increase your
compile times.

Please refer to the setup links below for more information on setting up the toolflow.

4.1.1 Setup Links

1. Installing the Toolflow

2. Installing Matlab

3. Installing Xilinx Vivado

4. Configuring the Toolflow

5. Running the Toolflow

Installing the Toolflow

This page explains how to install the CASPER tools and what supporting software is required to run them.

Getting the right versions

The toolflow is very sensitive to mis-matching software versions. The current compatibility matrix of software versions
is below:

(Note that official support for ROACH plaforms is no longer provided, however this version of mlib_devel contains
all ROACH related documentation and ROACH tutorials can be found here)

Other software combinations may work, but these are the tested configurations. The master branch is usually updated
once a year. Between updates, code with newer features can be found in the casper-astro-soak-test branch.
This branch can usually be used in place of the master branch for platforms which support master. However,
be aware that casper-astro-soak-test is likely to be less stable. Please report any bugs you encounter via
github’s issue tracker.

10 Chapter 4. mlib_devel directory structure

https://github.com/casper-astro/mlib_devel/tree/d77999047d2f0dc53e1c1e6e516e6ef3cdd45632/docs
https://casper-tutorials.readthedocs.io/en/latest/tutorials/roach/tut_intro.html

CASPER Toolflow, Release 0.1

Pre-requisites

1. MATLAB

MATLAB installation instructions are available here, or, contact whoever manages your software installations.
You will need to install both MATLAB and Simulink.

2. Xilinx Vivado

This is available from xilinx.com and will require a license. If you are part of an academic institution you may
be eligible for free licenses via the Xilinx University Program. Vivado install instructions are available here.

3. Python

Compiling for supported platforms requires Python 3 and pip3. If you don’t have these already you can
probably install them in Ubuntu environments by opening a terminal and running the command apt-get
install python3 python3-pip.

We thoroughly recommend using a virtual environment to separate the version of Python and its libraries the
toolflow uses from the rest of your system.

To create a Python 3 virtual environment:

change directory to where you want the virtual environment to live
cd /home/user/work
install virtualenv using pip3
sudo pip3 install virtualenv
create a Python 3 virtual environment
virtualenv -p python3 casper_venv
to activate the virtual environment:
source casper_venv/bin/activate
to deactivate the virtual environment:
deactivate

Obtaining the Toolflow

Clone the toolflow from the mlib_devel git repository.

Clone the mlib_devel repository. Replace <branch_name> with the branch
supported by your chosen platform.
Eg. for master you should run:
git clone -b master https://github.com/casper-astro.mlib_devel
git clone -b <branch_name> https://github.com/casper-astro/mlib_devel

This could take a while – the repository is several hundred megabytes. If you want, you can save some time by adding
the --depth=1 flag to the above command. This will only download the current version of the repository, rather
than its full git history.

Next, move into the mlib_devel repository you have just created, activate your virtual environment (if using one)
and download any Python dependencies you need by installing the requirements.txt file. The downloaded dependencies
will be installed within the virtual environment separate to the rest of your system.

cd mlib_devel
source /home/user/work/casper_venv/bin/activate
pip3 install -r requirements.txt

You may need to run the pip3 install command as an administrator if you are using the system-maintained
python installation instead of a virtual environment.

4.1. Setup 11

https://casper-toolflow.readthedocs.io/en/latest/src/How-to-install-Matlab.html
https://www.xilinx.com
https://www.xilinx.com/support/university.html
https://casper-toolflow.readthedocs.io/en/latest/src/How-to-install-Xilinx-Vivado.html
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv
https://github.com/casper-astro/mlib_devel

CASPER Toolflow, Release 0.1

Configuring the toolflow

You now have all the software you need to start building your designs. However, you’ll still need to specify some local
configuration details which will depend on how you carried out your installation. See Configuring the Toolflow for
more details.

How to install Matlab

This section explains How To install Matlab R2013b and R2016b.

How to Install R2013b

1. OS Required/suggested: Ubuntu 14.04 LTS

2. Ubuntu 14.04. Using Nautilius, click on R2013b_UNIX.iso and extract to “Installs/Matlab2013b”.

3. Ubuntu 14.04. Open a terminal < ctrl + alt + T>. You will need to install the JRE (Java Runtime Environment)
if you don’t have it. Type sudo apt-get install openjdk-7-jre at the prompt and press enter.

4. Terminal: You will now need to backup file “libstdc++.so.6” and link to file “libstdc++.so.6.0.13”. Type in cd
~/Installs/Matlab2013b/bin/glnxa64 and press enter.

5. Terminal: Type sudo mv libstdc++.so.6 libstdc++.so.6_bu and enter. The file should now be
backed up.

6. Terminal: Type sudo ln -s libstdc++.so.6.0.13 libstdc++.so.6 and press enter. The file
should now be linked.

7. Terminal: set the matlab environment variable to call java 7. Type export MATLAB_JAVA=”/usr/lib/
jvm/java-7-openjdk-amd64/jre and press enter. Type echo $MATLAB_JAVA to make sure the new
path is set.

8. Terminal: Make sure the java is executable. Type cd ~/Installs/Matlab2013b and press enter. Type
chmod +x sys/java/jre/glnxa64/jre/bin/java and press enter.

9. Terminal: You will now need to invoke the installer. Type sudo ./install -javadir /usr/lib/
jvm/java-7-openjdk-amd64/jre at the prompt and press enter.

10. The MathWorks Installer GUI should pop up. Select “Install without using the Internet” and select “Next”.

11. You will be requested to sign the “License Agreement” page. Click “Yes” and then click “Next”.

12. You will be requested to fill in the file installation key for your license. The Matlab Administrator should
of provided a license and file installation key. If not, make sure you get one from him/her. Type in the file
installation key and press “Next”. I choose to install my license file under “~/Matlab”.

13. You will then be requested for the “Installation Type”. Click on the “Typical” radio button and press “Next”.

14. You will then need to specify the installation folder. I choose “/opt/Matlab/R2013b”. Press “Next”. If the folder
does not exist then click “Yes” to create it.

15. You will then be required to confirm your installation settings. If happy then press “Install” else press “Back”
and then return to this step when happy.

16. You will be informed that your installation may require additional configuration skips. This can be ignored.
Click “Next”.

17. You will be informed that the installation is complete. Make sure Activate Matlab is ticked and click “Next”.

12 Chapter 4. mlib_devel directory structure

https://casper-toolflow.readthedocs.io/en/latest/src/Configuring-the-Toolflow.html

CASPER Toolflow, Release 0.1

18. It is now time to Activate MathWorks Software. A “MathWorks Software Activation” window will pop up.
Click on the “Activate manually without the internet” and press “Next”.

19. Click on the “Enter the full path to your license file, including the file name:” and browse to the license file (*.lic)
and click “Select”. Then press “Next”. If all goes well then you will receive a message that says “Activation is
complete.”. Click “Finish”.

20. Open another terminal and navigate to the “opt” folder and remember to change user and group to your username
with the following command: sudo chown <username>:<username> Matlab -R

21. Terminal: Navigate to the “home” folder and remember to change user and group to your username with the
following command: sudo chown <username>:<username> .matlab -R

22. It will be a good idea to create an Matlab R2013b startup script file on your Desktop with the following lines:

#!/bin/bash
cd /opt/Matlab/R2013b/bin/
./matlab

NB: Make sure the file is executable and that the nautilius documentation
navigator is set to run the script.

1. Run the script and the Matlab IDE will launch. You can now select the required Matlab m files (*.m) and
continue.

2. In order to run the ISE-flow of the CASPER tools, please see here

How To Install R2016b

1. OS Required/suggested: Ubuntu 14.04 LTS, Ubuntu 16.04 LTS (with tweaks), Red Hat 6.6 (Santiago).

2. Ubuntu 14.04. Using Nautilius, click on “R2016b_glnxa64_dvd1.iso” and extract to “Installs/Matlab2016b”.

3. Ubuntu 14.04. Open a terminal < ctrl + alt + T> and type cd ~/Installs and then type chmod +w
Matlab2016b/ -R. This will give all the files in the Matlab2016b folder write access.

4. Ubuntu 14.04. Using Nautilius, click on “R2016b_glnxa64_dvd2.iso” and extract to “Installs/Matlab2016b”.

5. Open a terminal <ctrl + alt + T> and type cd ~/Installs/Matlab2016b/,then sudo ./install
and enter.

6. The MathWorks Installer GUI should pop up. Select “Use a File Installation Key” and select “Next”.

7. You will be requested to sign the “License Agreement” page. Click “Yes” and then click “Next”.

8. You will be requested to fill in the file installation key for your license. The Matlab Administrator should of
provided a license and file installation key. If not, make sure you get one from him. Type in the file installation
key and press “Next”. I choose to install my license file under “~/Matlab”.

9. You will then need to specify the installation folder. I choose “/opt/Matlab/R2016b”. Press “Select” and then
“Next”.

10. You will then see a “Product Selection” window. Make sure that all products are ticked and select “Next”.

11. You must then decide where you want the symbolic links to your Matlab scripts to be stored. I chose the default
location “/usr/local/bin”.

12. You will then be required to confirm your installation settings. If happy then press “Install” else press “Back”
and then return to this step when happy.

13. You will be informed that your installation may require additional configuration skips. This can be ignored.
Click “Next”.

4.1. Setup 13

https://casper.berkeley.edu/wiki/MSSGE_Setup_with_Xilinx_14.x_and_Matlab_2012b

CASPER Toolflow, Release 0.1

14. You will be informed that the installation is complete. Make sure Activate Matlab is ticked and click “Next”.

15. It is now time to Activate MathWorks Software. A “MathWorks Software Activation” window will pop up.
Click on the “Activate manually without the internet” and press “Next”.

16. Click on the “Enter the full path to your license file, including the file name:” and browse to the license file (*.lic)
and click “Select”. Then press “Next”. If all goes well then you will receive a message that says “Activation is
complete.”. Click “Finish”.

17. Open another terminal and navigate to the “opt” folder and remember to change user and group to your username
with the following command: sudo chown <username>:<username> Matlab -R

18. Terminal: Navigate to the “home” folder and remember to change user and group to your username with the
following command: sudo chown <username>:<username> .matlab -R

19. It will be a good idea to create an Matlab R2016b startup script file on your Desktop with the following lines:

#!/bin/bash
cd /opt/Matlab/R2016b/bin/
./matlab

NB: Make sure the file is executable and that the nautilius documentation navigator is set to run the script.

1. Run the script and the Matlab IDE will launch. You can now select the required Matlab m files (*.m) and
continue.

2. In order to run Matlab with the Casper tools please look at the CASPER read the docs page: https://casper-
toolflow.readthedocs.io/en/latest/jasper_documentation.html.

How To Install R2018a

1. OS Required/suggested: Ubuntu 14.04 LTS/Ubuntu 16.04 LTS.

2. Ubuntu 16.04. Using Nautilius, click on “R2018a_glnxa64_dvd1.iso” and extract to “Installs/Matlab2018a”.

3. Ubuntu 16.04. Open a terminal < ctrl + alt + T> and type cd ~/Installs and then type chmod +w
Matlab2018a/ -R. This will give all the files in the Matlab2018a folder write access.

4. Ubuntu 16.04. Using Nautilius, click on “R2018a_glnxa64_dvd2.iso” and extract to “Installs/Matlab2018a”.

5. Open a terminal <ctrl + alt + T> and type cd ~/Installs/Matlab2018a/,then sudo ./install
and enter.

6. The MathWorks Installer GUI should pop up. Select “Use a File Installation Key” and select “Next”.

7. You will be requested to sign the “License Agreement” page. Click “Yes” and then click “Next”.

8. You will be requested to fill in the file installation key for your license. The Matlab Administrator should of
provided a license and file installation key. If not, make sure you get one from him. Type in the file installation
key and press “Next”. I choose to install my license file under “~/Matlab”.

9. You will then need to specify the installation folder. I choose “/opt/Matlab/R2018a”. Press “Select” and then
“Next”.

10. You will then see a “Product Selection” window. Make sure that all products are ticked and select “Next”.

11. You must then decide where you want the symbolic links to your Matlab scripts to be stored. I chose the default
location “/usr/local/bin”.

12. You will then be required to confirm your installation settings. If happy then press “Install” else press “Back”
and then return to this step when happy.

14 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

13. You will be informed that your installation may require additional configuration skips. This can be ignored.
Click “Next”.

14. You will be informed that the installation is complete. Make sure Activate Matlab is ticked and click “Next”.

15. It is now time to Activate MathWorks Software. A “MathWorks Software Activation” window will pop up.
Click on the “Activate manually without the internet” and press “Next”.

16. Click on the “Enter the full path to your license file, including the file name:” and browse to the license file (*.lic)
and click “Select”. Then press “Next”. If all goes well then you will receive a message that says “Activation is
complete.”. Click “Finish”.

17. Open another terminal and navigate to the “opt” folder and remember to change user and group to your username
with the following command: sudo chown <username>:<username> Matlab -R

18. Terminal: Navigate to the “home” folder and remember to change user and group to your username with the
following command: sudo chown <username>:<username> .matlab -R

19. It will be a good idea to create an Matlab R2016b startup script file on your Desktop with the following lines:

#!/bin/bash
cd /opt/Matlab/R2018a/bin/
./matlab

NB: Make sure the file is executable and that the nautilius documentation navigator is set to run the script.

1. Run the script and the Matlab IDE will launch. You can now select the required Matlab m files (*.m) and
continue.

2. Install the R2018a update pack: “r2018a-update-6.tar.gz” by unpacking the tar.gz file and following the install
instructions “r2018a-updates-install-instructions.pdf” for linux.

3. In order to run Matlab with the Casper tools please look at the CASPER read the docs page: https://casper-
toolflow.readthedocs.io/en/latest/jasper_documentation.html.

How to install Xilinx Vivado

This section explains How To install Vivado 2016.2, 2016.4 and 2018.2.

How to Install 2016.x

1. OS Required/suggested: Ubuntu 14.04 LTS, Ubuntu 16.04 LTS (with tweaks) and Red Hat 6.6 (Santiago). There
was an issue using Ubuntu 12.04 LTS, which caused the DocNav utility to crash.

2. Click/double click on the Xilinx_Vivado_SDK_2016.2_0605_1.tar.gz file in the Ubuntu Nautilius
document navigator and choose a folder to extract the files to. I use “home/Installs‘‘ in this document. If you
use something different then remember to replace “Installs” with your directory name.

3. Ubuntu 14.04. Open a terminal < ctrl + alt + T>. Change directory to the following folder: cd Installs/
Xilinx_Vivado_SDK_2016.2_0605_1

4. Terminal: Type sudo ./xsetup and press enter. This application needs to be installed with root privileges
otherwise the installation will not install properly. You will be prompted for the sudo password. Enter this and
press enter.

5. The Vivado Installer GUI will pop up. The GUI might explain that there is a new version available, but ignore
that and press “Continue” and then “Next” to commence with the installation process.

6. Read the terms and conditions page and when happy tick “I agree” for all three tick boxes. Then click “Next”.

4.1. Setup 15

CASPER Toolflow, Release 0.1

7. Select the “Vivado HL_System Edition” radio button and select “Next”.

8. You will then be required to select which tools you want to install with the Vivado Design Edition. I selected
“Software Development Kit”, “Ultrascale+” and “Zynq UltraScale + MPSoC”. The rest of the boxes were ticked
(except Cable Drivers),so I have decided to install the complete set of tools available. Make sure that “DocNav”
is ticked if you want access to the documentation that Xilinx has provided. This is highly recommended, as the
documentation is part of the Ultrafast design methodology. Press “Next”.

9. Select where you want to install the Vivado tool set. I am using the default opt/Xilinx folder. I have also
ticked the “Create program group entries” and “create desktop shortcuts” buttons. This is not necessary though.
Press “Next”.

10. A window will pop up offering to create the opt/Xilinx directory if it does not exist. Select “Yes”.

11. A window with the “Installation Summary” will be displayed showing what tools will be installed and where
they will be stored on your drive. If you are happy press “Install”, otherwise press “Back” and edit your previous
settings.

12. Wait until the Xilinx Software Install window states that the “Installation completed successfully” and select
“OK”.

13. Open another terminal and navigate to the opt/ folder and remember to change user and group to your user-
name with the following command: sudo chown <username>:<username> Xilinx -R

14. Terminal: Navigate to the home folder and remember to change user and group to your username with the
following command: sudo chown <username>:<username> .Xilinx -R

15. DocNav will not work unless you follow the steps highlighted in the text file:
set_up_vivado_2015.1_on_ubuntu_14.04 (Doc Nav section only). Install the i386 architecture and then
install the missing libraries. All the commands are highlighted in the attached file.

16. DocNav will now open, but you won’t be able to open the documentation until you have made the following
link. Using the terminal type in cd /opt/Xilinx/Vivado/2016.2/ids_lite/ISE/lib/lin64
and press enter.

17. Using the terminal, type in mv libstdc++.so.6 libstdc++.so.6bu and press enter. Now type in ln
-s /usr/lib/x86_64-linux-gnu/libstdc++.so.6 ./libstdc++.so.6 and pressenter. The
libstdc++.so.6 file will now be properly linked and DocNav should work.

18. It will be a good idea to create a vivado startup script file on your Desktop with the following lines:

#!/bin/bash
cd /opt/Xilinx/Vivado/2016.2/bin/
./vivado

NB: Make sure the file is executable and that the nautilius documentation navigator is set to run the script.

19. Run the script and the Vivado IDE will launch. You can now select the required Xilinx Vivado project file (*.xpr)
and continue.

20. It is now time to install the license for Vivado. Create a Xilinx folder in your home directory using the
nautilius documentation navigator: home/<user name>/Xilinx and copy the vivado license file provided
by your administrator to this location.

21. Load the license using the Vivado License Manager”. If not already open click on “Help” -> “Manage Li-
cense. . . ”. Click “Load License” and then click on “Copy License. . . ”. Navigate to the license file (*.lic) in the
home/<user name>/Xilinx folder. Press “Open” and when the license installation was successful then
press “OK”.

22. To confirm that the license file was successful, click on “View License Status” and make sure a list of Tools/IP
is read back and that the license is still valid. Once this is done then close the “Vivado License Manager” by

16 Chapter 4. mlib_devel directory structure

https://drive.google.com/file/d/0B2dCFqGD5y-8amdKbWZBM18yTEE/view?usp=sharing

CASPER Toolflow, Release 0.1

clicking on the red cross at the top left of the window. You will be prompted if you want to close the “Vivado
License Manager”. Click “Yes”.

Optional: Install USB Drivers for JTAG

Note: this will only be used by toolflow/yellow block developers and is not required for standard use of the toolflow

The most reliable way to install the JTAG cable drivers is to use the drivers provided with ISE.

A folder containing all the files required has been uploaded in the same folder as this document:
linux_jtag_cable_drivers.tar.gz. This also includes a useful installation script that prepares the files and places them in
the correct directories.

Instructions:

• Extract the contents of the file linux_jtag_cable_drivers.tar.gz

• Run: sudo ./install.sh (NB!: Must run as sudo)

It may be a good idea to power your PC/lap top down and then up again as the USB drivers may not take affect until
this happens. In my case, I plugged a stick drive into the USB and then ejected that and connected the Xilinx Platform
Cable USB module. Once this was done then the status LED illuminated and I was able to configure the FPGA via
JTAG.

How to Install 2018.x

1. OS Required/suggested: Ubuntu 16.04 LTS.

2. Click/double click on the Xilinx_Vivado_SDK_2018.2_0614_1954.tar.gz file in the Ubuntu Nau-
tilius document navigator and choose a folder to extract the files to. I use “home/Installs‘‘ in this document. If
you use something different then remember to replace “Installs” with your directory name.

3. Ubuntu 16.04. Open a terminal < ctrl + alt + T>. Change directory to the following folder: cd Installs/
Xilinx_Vivado_SDK_2018.2_0614_1954

4. Terminal: Type sudo ./xsetup and press enter. This application needs to be installed with root privileges
otherwise the installation will not install properly. You will be prompted for the sudo password. Enter this and
press enter.

5. The Vivado Installer GUI will pop up. The GUI might explain that there is a new version available, but ignore
that and press “Continue” and then “Next” to commence with the installation process.

6. Read the terms and conditions page and when happy tick “I agree” for all three tick boxes. Then click “Next”.

7. Select the “Vivado HL_System Edition” radio button and select “Next”.

8. You will then be required to select which tools you want to install with the Vivado Design Edition. I selected
“Software Development Kit”, “Ultrascale+” and “Zynq UltraScale+ MPSoC”. The rest of the boxes were ticked
(except Cable Drivers), so I have decided to install the complete set of tools available. Make sure that “DocNav”
is ticked if you want access to the documentation that Xilinx has provided. This is highly recommended, as the
documentation is part of the Ultrafast design methodology. Press “Next”.

9. Select where you want to install the Vivado toolset. I am using the default opt/Xilinx folder. I have also
ticked the “Create program group entries” and “create desktop shortcuts” buttons. This is not necessary though.
Press “Next”.

10. A window will pop up offering to create the opt/Xilinx directory if it does not exist. Select “Yes”.

4.1. Setup 17

https://drive.google.com/file/d/0Byu0Sq2IEDuJdVFMMkNLN2pxYnc/view?usp=sharing

CASPER Toolflow, Release 0.1

11. A window with the “Installation Summary” will be displayed showing what tools will be installed and where
they will be stored on your drive. If you are happy press “Install”, otherwise press “Back” and edit your previous
settings.

12. Wait until the Xilinx Software Install window states that the “Installation completed successfully” and select
“OK”.

13. Open another terminal and navigate to the opt/ folder and remember to change user and group to your user-
name with the following command: sudo chown <username>:<username> Xilinx -R

14. Terminal: Navigate to the home folder and remember to change user and group to your username with the
following command: sudo chown <username>:<username> .Xilinx -R

15. If DocNav does not work, then try follow the steps highlighted in the text file:
set_up_vivado_2015.1_on_ubuntu_14.04 (Doc Nav section only). Install the i386 architecture and then
install the missing libraries. All the commands are highlighted in the attached file.

16. DocNav may open, but it is possible you won’t be able to read the documentation until you have made the
following link - first try and read the documentation via DocNav though. Using the terminal type in cd /opt/
Xilinx/Vivado/2016.2/ids_lite/ISE/lib/lin64 and press enter.

17. If you still can’t access the documentation via DocNav: Using the terminal, type in mv libstdc++.
so.6 libstdc++.so.6bu and press enter. Now type in ln -s /usr/lib/x86_64-linux-gnu/
libstdc++.so.6 ./libstdc++.so.6 and pressenter. The libstdc++.so.6 file will now be prop-
erly linked and DocNav should work.

18. It will be a good idea to create a vivado startup script file on your Desktop with the following lines:

#!/bin/bash
cd /opt/Xilinx/Vivado/2018.2/bin/
./vivado

NB: Make sure the file is executable and that the nautilius documentation navigator is set to run the script.

19. Run the script and the Vivado IDE will launch. You can now select the required Xilinx Vivado project file (*.xpr)
and continue.

20. It is now time to install the license for Vivado. Create a Xilinx folder in your home directory using the
nautilius documentation navigator: home/<user name>/Xilinx and copy the vivado license file provided
by your administrator to this location.

21. Load the license using the Vivado License Manager”. If not already open click on “Help” -> “Manage Li-
cense. . . ”. Click “Load License” and then click on “Copy License. . . ”. Navigate to the license file (*.lic) in the
home/<user name>/Xilinx folder. Press “Open” and when the license installation was successful then
press “OK”.

22. To confirm that the license file was successful, click on “View License Status” and make sure a list of Tools/IP
is read back and that the license is still valid. Once this is done then close the “Vivado License Manager” by
clicking on the red cross at the top left of the window. You will be prompted if you want to close the “Vivado
License Manager”. Click “Yes”.

Optional: Install USB Drivers for JTAG

Note: this will only be used by toolflow/yellow block developers and is not required for standard use of the toolflow

A folder containing all the files required has been uploaded in the same folder as this document:
linux_jtag_cable_drivers.tar.gz. This also includes a useful installation script that prepares the files and places them in
the correct directories.

Instructions:

18 Chapter 4. mlib_devel directory structure

https://drive.google.com/file/d/0B2dCFqGD5y-8amdKbWZBM18yTEE/view?usp=sharing
https://drive.google.com/file/d/0Byu0Sq2IEDuJdVFMMkNLN2pxYnc/view?usp=sharing

CASPER Toolflow, Release 0.1

• Extract the contents of the file linux_jtag_cable_drivers.tar.gz

• Run: sudo ./install.sh (NB!: Must run as sudo)

It may be a good idea to power your PC/lap top down and then up again as the USB drivers may not take affect until
this happens. In my case, I plugged a stick drive into the USB and then ejected that and connected the Xilinx Platform
Cable USB module. Once this was done then the status LED illuminated and I was able to configure the FPGA via
JTAG.

Configuring the Toolflow

If you have successully installed the toolflow and its dependencies, it is now time to configure the flow to suit your
specific environment. The toolflow needs to know where dependencies like MATLAB and Xilinx tools have been
installed. Other site-dependent parameters may also need to be defined.

The startsg script

A startup script – startsg – is provided as part of the toolflow repository. This script can be used in two ways:

• If executed (i.e. /path/to/mlib_devel/startsg): start MATLAB with the correctly defined library
paths.

• If sourced (i.e. source /path/to/mlib_devel/startsg): configure software paths without starting
MATLAB.

The former method is what you should do if you want to start a Simulink design, or open an existing one.

The latter method is useful if you want to run parts of the toolflow outside of MATLAB (eg. exec_flow.py) or run
Xilinx tools (eg. vivado) directly from the command line.

Specifying local details

The startsg script is generic. You should not need to modify it. The script does not require that the Matlab and
Xilinx tools be installed in specific locations, but it does require that you provide it with a few details about your local
installation. This is done by creating a startsg.local file that defines a few key variables needed by startsg.
Two essential variables are:

• MATLAB_PATH - the path to the directory where MATLAB was installed

• XILINX_PATH - the path to the directory where Xilinx tools were installed

Optional variables:

• PLATFORM - Used by the Xilinx tools to select suitable runtime binaries for your system. If not specified,
it will be defaulted to lin64, indicating a 64-bit Linux operating system. This is the only configuration the
collaboration tests.

• XILINXD_LICENCE_FILE - The path to your Xilinx software license if it exists in a non-standard location.

• JASPER_BACKEND - the type of Xilinx tools you want to use to implement your design. Supported options are
vivado or ise. The default is vivado, which is correct for all CASPER-supported platforms. (Note: ise is
the Xilinx tool used for ROACH1/ROACH2 designs, however official support for ROACH platforms is no longer
provided).

• CASPER_PYTHON_VENV_ON_START - The path to your Python virtual environment (if one is being used).
This will activate the virtual environment on load.

4.1. Setup 19

CASPER Toolflow, Release 0.1

Other variables: Depending on your operating system, and MATLAB / Xilinx quirks, you may need to specify other
generic OS variables. For example, with MATLAB 2018a and Ubuntu 16.04, it is necessary to over-ride the default
MATLAB libexpat library to a newer version. To do this you can set the LD_PRELOAD variable.

Here is a sample startsg.local file:

export XILINX_PATH=/opt/Xilinx/Vivado/2019.1
export MATLAB_PATH=/usr/local/MATLAB/R2018a
export PLATFORM=lin64
export JASPER_BACKEND=vivado

over-ride the MATLAB libexpat version with the OS's one.
Using LD_PRELOAD=${LD_PRELOAD}:"..." rather than just LD_PRELOAD="..."
ensures that we preserve any other settings already configured
export LD_PRELOAD=${LD_PRELOAD}:"/usr/lib/x86_64-linux-gnu/libexpat.so"

Activate a custom python environment on load
export CASPER_PYTHON_VENV_ON_START=/home/user/work/casper_venv

Since this configuration refers to your specific installation environment, in general it shouldn’t be commited to the
mlib_devel repository. In fact, the repository is configured to ignore changes to any files with names begin-
ning startsg.. If you really want to commit your local configuration file, you can do this, but it’s helpful
to call it something other than startsg.local, (eg. startsg.local.example or startsg.local.
my-server-name) so as not to conflict with other users, all of whom will have similar files with different contents.

Using startsg

By default, executing (or sourcing) the startsg script will use variables defined in the configuration file startsg.
local residing in the same directory as startsg. However, you can use a specific configuration by specifying one
as an argument to startsg. This can be useful if you want to store configurations for multiple versions of MATLAB
/ Xilinx tools.

For example:

$./startsg # Uses startsg.local if one exists in the
→˓current directory

$./mlib_devel/startsg # Uses startsg.local if one exists in ./mlib_
→˓devel/

$./startsg startsg.local.use_vivado_2016 # Uses the startsg.local.use_vivado_16
→˓configuration file

Symlink for convenience

Running startsg from the mlib_devel directory (where it lives) will start MATLAB with mlib_devel as the
current directory. Hopefully you store your models somewhere outside mlib_devel (which should contain only
the CASPER libraries), in which case after running startsg you will need to navigate within MATLAB to the
directory where your model files live. To avoid this minor annoyance, you can create a symbolic link to startsg
in your application directory (i.e. where your model file lives). When running startsg via this symlink, MATLAB
will start up with your application directory as the current directory and also run the optional casper_startup.m
file if one exists.

To configure such a symlink you should run

20 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Go to the directory you store your models in.
You should place a startsg.local file here.
cd /directory/where/my/models/are
Create the symbolic link
ln -s /directory/where/mlib_devel/is/startsg startsg
Run startsg from your model directory
./startsg my.startsg.local

This model of operating works particularly well when using git submodules to store a copy of mlib_devel alongside
your models. Using submodules in this way ensures that whoever downloads your models can also easily obtain the
version of mlib_devel they were originally compiled against.

In this case, your directory structure will look something like:

my_spectrometer/
my_spectrometer.slx
startsg.local
startsg (symlink -> ./mlib_devel/startsg)
mlib_devel (submodule)

startsg
casper_library
...
...
...

Running the Toolflow

1. There are two ways of working with the Vivado-based CASPER toolflow. You can do this initially with the
MATLAB GUI to compile the front end and then handle the middleware and backend generation using Python
or you can run everything in Python. The former stage is more for design and debugging (steps 2-11) and the
later stage (steps 12-15) is for the final tested and working design. This How-to will cover both methods.

2. Matlab/Python method: Using the terminal, type the following under “mlib_devel”: ./startsg It is cur-
rently not possible to compile for Altera or Lattice FPGAs. This script will source all the relevant Matlab and
Xilinx paths, run matlab and start the system generator. Wait until the Matlab GUI has opened and Matlab is
ready.

3. Matlab/Python method: In the Matlab command window, type the following: simulink. This will start
simulink. Wait until the Simulink window has opened.

4. Matlab/Python method: In the Simulink Library Browser, click on the “open model or library” icon
in the tab and select where your desired simulink file is (*.slx). There are some test files under
“jasper_library/test_models”. I use “test_snap.slx” for this How To. Once the file has been selected, click
“Open”. The “test_snap” design should open in the Simulink window.

5. Matlab/Python method: Click the simulink design window (“test_snap”) and press the following: “Ctrl + D”.
This will update the simulink model and check for warnings or errors. Make sure there are no errors or warnings.
A window should pop up if this is the case.

6. Matlab/Python method: In the Matlab command window terminal, type the following: jasper_frontend.
This will generate the yellow block peripheral file and run the system generator. Wait until the “XSG generation
complete. Complete. Run ‘exec_flow.py -m” message is displayed.

7. Matlab/Python method: In the Matlab Command Window, cut the following text from it: python ../
exec_flow.py -m ... --middleware --backend --software The matlab generation
process is now complete and now it is time to switch to Python.

4.1. Setup 21

https://git-scm.com/book/en/v2/Git-Tools-Submodules

CASPER Toolflow, Release 0.1

8. Matlab/Python method: Open a new terminal <CTRL+ALT+T>, and source the following files from the
“mlib_devel” directory: startsg This is an important step, because the Xilinx and Matlab paths will not be
specified properly and “exec_flow.py” will fail to run if this is not done.

9. Matlab/Python method: Using the terminal, paste the “python exec_flow.py. . . .” command that was cut ear-
lier from Matlab, in the terminal: python exec_flow.py -m ... --middleware --backend
--software. This command will execute the middleware, which calls the yellow block constructors, creates
the top.v file and generates the yaml file, which contains all the parameters needed for the backend to compile.
The backend reads the yaml file and builds a list of sources, constraints, generates the constraints file and the tcl
file. This tcl file is used by Vivado to compile the top.v file and all other relevant source files. This generates a
bit and binary file, which is used to configure the FPGA. The software reads the binary file and generates a bof
and fpg file. The arguments passed to exec_flow.py will be explained in more detail below when dealing with
the Python method.

10. Matlab/Python method: Using the terminal, wait until the design has finished compiling. Vivado compiles
should indicate that there are no timing violations. Check the slack times for the setup and hold reports. They
should not be negative. If they are then your design is not meeting timing and some changes will need to be
made to your design.

11. Matlab/Python method: The output directories are generated where the *.slx file sits. For example, build-
ing for test_snap.slx results in the following directories being generated under jasper_library/
test_models/test_snap/:

• sysgen/: contains the system generator files,

• outputs/: contains the bof and fpg files, and

• myproj/: contains the Vivado projects files, source files, synth results and implementation results. The
bin and bit files are also stored here.

NB: Instead of running “jasper_frontend” from the Matlab command window, you can run “jasper”, which
will do all the above steps from 6) to now, but all display output will be routed through the Matlab Command
window.

12. Python method: Before I explain this method it is important to explain how the “exec_flow” command works
and the arguments that are passed to it.

• The exec_flow, which stands for “execution flow” can either run the whole flow or just parts of the flow
depending on the needs of the user.

• The Vivado compile is done using project mode only.

• I have already explained the --middleware, --backend and --software arguments in step 9)
above.

• There is also a --perfile and --frontend argument, which is not needed in the Matlab/Python
method, but is required for the Python method.

• The --perfile and --frontend arguments run the yellow block peripheral file generation and the
system generator compile, respectively. It is identical to running jasper_frontend from the command
window in Matlab - see Matlab/Python method above.

• Below is a list of the exec_flow arguments.

– --perfile - Runs the front end peripheral file generation. If not specified, then it won’t generate
the peripheral file.

– --frontend - This compiles the front end IP, which basically runs the system generator. If not
specified, then the compile will not be run.

– --middleware - This runs the toolflow middle process. If not specified, then this process will not
be run.

22 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

– --backend - This runs the backend compilation i.e. Xilinx Vivado. If not specified, then this
process will not be run.

– --software - This runs the software compilation - generates a *.bof and *.fpg file. If not specified,
then this process will not be run.

– --be - This specifies the type of backend to be run. This is “–be vivado”, but provision has been
made for other backends. If this is not specified, then the default is the Vivado backend.

– --jobs - The number of processor cores to run the compile with. If this is not specified, the default
is 4. You need to make sure that your processor has at least 4 threads if this is to work.

– -m - The absolute path and filename of the *.slx file (Simulink model) to compile. If not specified, the
default is “/tools/mlib_devel/jasper_library/test_models/test.slx”. I would suggest always specifying
this.

– -c - This is the build directory. The default is the same directory as the *.slx file (Simulink model). I
don’t normally specify this.

– --synth_strat - Specify a Synthesis Strategy for your compile. The options are as follows, as
provided by Vivado 2019.1.1:

* Flow_AreaOptimized_high

* Flow_AreaOptimized_medium

* Flow_AreaMultThresholdDSP

* Flow_AlternateRoutability

* FFlow_PerfOptimized_high

* Flow_PerfThresholdCarry

* Flow_RuntimeOptimized

– --impl_strat - Specify an Implementation Strategy for your compile. The options are as follows,
as provided by Vivado 2019.1.1:

* Performance_Explore

* Performance_ExplorePostRoutePhysOpt

* Performance_ExploreWithRemapx

* Performance_WLBlockPlacement

* Performance_WLBlockPlacementFanoutOpt

* Performance_EarlyBlockPlacement

* Performance_NetDelay_high

* erformance_NetDelay_low

* Performance_Retiming

* Performance_ExtraTimingOpt

* Performance_RefinePlacement

* Performance_SpreadSLLs

* Performance_BalanceSLLs

* Performance_BalanceSLRs

* Performance_HighUtilSLRs

4.1. Setup 23

CASPER Toolflow, Release 0.1

* Congestion_SpreadLogic_high

* Congestion_SpreadLogic_medium

* Congestion_SpreadLogic_low

* Congestion_SSI_SpreadLogic_high

* Congestion_SSI_SpreadLogic_low

* Area_Explore

* Area_ExploreSequential

* Area_ExploreWithRemap

* Power_DefaultOpt

* Power_ExploreArea

* Flow_RunPhysOpt

* Flow_RunPostRoutePhysOpt

* Flow_RuntimeOptimized

* Flow_Quick

Here are some examples of how to run the command:

This will run the whole process, except will not generate a fpg and bof file for programming.

python .../exec_flow.py -m /home/<username>/mlib_devel/jasper_library/test_models/
→˓test_snap.slx --perfile --frontend --middleware --backend

This will run the whole process.

python .../exec_flow.py -m /home/<username>/mlib_devel/jasper_library/test_models/
→˓test_snap.slx --perfile --frontend --middleware --backend --software

This will run the front end peripheral file generation and IP compile process using the Vivado system generator.

python .../exec_flow.py -m /home/<username>/mlib_devel/jasper_library/test_models/
→˓test_snap.slx --perfile --frontend

13. Python method: Open a new terminal <CTRL+ALT+T>, and source the following files from the mlib_devel
directory:

• source startsg startsg.local

• This is an important step, because the Xilinx and Matlab paths will not be specified properly and
exec_flow.py will fail to run.

14. Python method: Using the terminal, run the complete “exec_flow” command:

python .../exec_flow.py -m /home/<username>/mlib_devel/jasper_library/test_models/
→˓test_snap.slx --perfile --frontend --middleware --backend --software

Feel free to add or remove arguments as you wish or need. The design should run through the toolflow generation
process to completion. Once complete, the Vivado compile should report any errors, e.g. timing issues. The
Vivado compile will determine if timing is met or not and display this to the screen. The user will need to
monitor the slack time variable to see whether the compile has met timing or not. If the slack time is negative
then timing is not met and if the slack time is positive for both setup and hold timing then the design has met
the timing requirements.

24 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

15. Python method: The output directories are generated where the *.slx file sits. I used “test_snap.slx”, hence the
following directories were generated under jasper_library/test_models/test_snap/:

• sysgen/: contains the system generator files,

• outputs/: contains the bof and fpg files, and

• myproj/: contains the Vivado projects files, source files, synthesis results and implementation results.
The bin and bit files are also stored here.

4.2 Documentation

• CASPER Tutorials

• Block Documentation

• Toolflow Documentation

• Toolflow Sourcecode

• casperfpga Sourcecode

4.2.1 Block Documentation

Contents

• Signal Processing Blocks
• Communication Blocks
• System Blocks

Signal Processing Blocks

adder_tree (Adder Tree)

barrel_switcher (Barrel Switcher)

bit_reverse (Bit Reverser)

cmult_4bit_br* (Conjugating Complex 4-bit Multiplier Implemented in BlockRAM)

cmult_4bit_br (Complex 4-bit Multiplier Implemented in BlockRAM)

cmult_4bit_em* (Conjugating Complex 4-bit Multiplier Implemented in Dedicated Multipliers)

cmult_4bit_em (Complex 4-bit Multiplier Implemented in Embedded Multipliers)

cmult_4bit_sl* (Conjugating Complex 4-bit Multiplier Implemented in Slices)

cmult_4bit_sl (Complex 4-bit Multiplier Implemented in Slices)

complex_addsub (Complex Adder/Subtractor)

c_to_ri (Complex to Real/Imaginary)

DDS (Direct Digital Synthesizer)

dec_fir (Decimating FIR Filter)

4.2. Documentation 25

http://casper-tutorials.readthedocs.io/en/latest/
https://casper-toolflow.readthedocs.io/projects/casperfpga/en/latest/

CASPER Toolflow, Release 0.1

delay_bram_en_plus (Enabled Delay in BlockRAM))

delay_bram_prog (Programmable Delay in BlockRAM)

delay_bram (Delay in BlockRAM)

delay_complex (Complex Delay)

delay_slr (Delay in SLRs)

delay_wideband_prog (Programmable Wideband Delay Implemented in BlockRAM)

dram_vacc (DRAM Vector Accumulator)

dram_vacc_tvg (DRAM Vector Accumulator Test Vector Generator)

edge (Edge Detect Block)

fft_biplex_real_2x (Real-sampled Biplex FFT, with Output Demuxed by 2)

fft_biplex_real_4x (Real-sampled Biplex FFT, with Output Demuxed by 4)

fft (Complex FFT)

fft_wideband_real (Real-sampled Wideband FFT)

finedelay_fstop_prog (Programmable Fine delay along with Fringe Stop)

finedelay_fstop_prog_cordic (Programmable Fine delay with Fringe Stop using CORDIC block)

fir_col (PFB FIR Column)

fir_dbl_col (PFB FIR Double Column)

fir_tap (PFB FIR Tap)

freeze_cntr (Freeze Counter)

lo_const (DC Local Oscillator)

lo_osc (Local Oscillator)

mixer (Mixer)

negedge (Negative Edge Detector)

partial_delay (Partial Delay)

pfb_fir_real (Real-sampled Polyphase FIR Filter Frontend for PFB)

pfb_fir (Polyphase FIR Filter Frontend for PFB)

posedge (Positive Edge Detector)

power (Complex Data Power Calculator)

pulse_ext (Pulse Extender)

rcmult (Real/Complex Multiplier)

reorder (Arbitrary Reorderer)

ri_to_c (Real/Imaginary to Complex)

square_transposer (Square Transposer)

stopwatch (Stopwatch)

sync_delay_en (Enabled Sync Delay)

sync_delay_proc (Programmable Sync Delay)

26 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

sync_gen (Parameterized Sync Generator)

win_x_engine (Windowed X-Engine)

xeng_tvg (X-Engine Test Vector Generator)

Adder Tree

Block: Adder Tree (adder_tree)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Sums all inputs using a tree of adds and delays.

Mask Parameters

Parameter Variable Description
No. of inputs. n_inputs The number of inputs to be summed.
Add Latency latency The latency of each stage through the adder tree.

Ports

Port Dir Data Type Description
sync in Boolean Indicates the next clock cycle containing valid data
din in Inherited A number to be summed.

Description

Sums all inputs using a tree of adds and delays. Total latency is ceil(log2(ninputs)) * latency.

4.2. Documentation 27

CASPER Toolflow, Release 0.1

Barrel Switcher

Block: Barrel Switcher (barrel_switcher)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Maps a number of inputs to a number of outputs by rotating In(N) to Out(N+M) (where M is specified on the sel
input), wrapping around to Out1 when necessary.

Mask Parameters

Parameter Variable Description
Number of inputs n_inputs The number of parallel inputs (and outputs).

Ports

Port Dir Data Type Description
sync in Boolean Indicates the next clock cycle contains valid data
In in Inherited The stream(s) to be transposed.
sync_out out Boolean Indicates that data out will be valid next clock cycle.
Out out Inherited The transposed stream(s).

Description

Maps a number of inputs to a number of outputs by rotating In(N) to Out(N+M) (where M is specified on the sel
input), wrapping around to Out1 when necessary.

Bit Reverser

Block: Bit reverser (bit_reverse)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

28 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Reverses the bit order of the input. Input must be unsigned with binary point at position 0. Costs nothing in hardware.

Mask Parameters

Parameter Variable Description
No. of bits. n_bits Specifies the width of the input.

Ports

Port Dir Data Type Description
in in UFix_x_0 The input signal.
out out UFix_x_0 The output.

Description

Reverses the bit order of the input. Input must be unsigned with binary point at position 0. Costs nothing in hardware.

Conjugate Complex 4-bit Multiplier BRAM

Block: Conjugating Complex 4-bit Multiplier Implemented in Block RAM (cmult_4bit_br*)
Block Author: ?
Document Author: ?

Contents

• Summary
• Mask Parameters
• Ports
• Description

4.2. Documentation 29

CASPER Toolflow, Release 0.1

Summary

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in Block
RAM.

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
Add Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac+bd
imag out Inherited -ad+bc

Description

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in Block
RAM. Each 4 bit real multiplier is implemented as a lookup table with 4b+4b=8b of address.

Complex 4-bit Multiplier BRAM

Block: Complex 4-bit Multiplier Implemented in Block RAM (cmult_4bit_br)
Block Author: Block Author
Document Author: Document Author

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Perform a complex multiplication (a + bi)(c di) = (ac bd) + (ad + bc)i. Implements the logic in Block RAM.

30 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
Add Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac-bd
imag out Inherited ad-bc

Description

Each 4 bit real multiplier is implemented as a lookup table with 4b+4b=8b of address.

Conjugate Complex 4-bit Multiplier, Dedicated Multipliers

Block: Conjugating Complex 4-bit Multiplier Implemented in Dedicated Multipliers. (cmult_4bit_em*)
Block Author: ?
Document Author: Vinayak Nagpal

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in dedicated
multipliers.

4.2. Documentation 31

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
dd Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac+bd
imag out Inherited -ad+bc

Description

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in dedicated
multipliers. Each 4 bit real multiplier is implemented as a lookup table with 4b+4b=8b of address.

Complex 4-bit Multiplier, Embedded Multipliers

Block: Complex 4-bit Multiplier Implemented in Embedded Multipliers (cmult_4bit_em)
Block Author: ?
Document Author: ?

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Perform a complex multiplication (a + bi)(c di) = (ac bd) + (ad + bc)i. Implements the logic in embedded multipliers.

32 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
dd Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac-bd
imag out Inherited ad+bc

Description

Perform a complex multiplication (a + bi)(c di) = (ac bd) + (ad + bc)i. Implements the logic in embedded multipliers.
Each 4 bit real multiplier is implemented as a lookup table with 4b+4b=8b of address.

Conjugate Complex 4-bit Multiplier, Slices

Block: Conjugating Complex 4-bit Multiplier Implemented in Slices (cmult_4bit_sl*)
Block Author: Aaron Parsons
Document Author: Vinayak Nagpal

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in Slices.

4.2. Documentation 33

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
Add Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac+bd
imag out Inherited -ad+bc

Description

Perform a conjugating complex multiplication (a + bi)(c di) = (ac + bd) + (bc ad)i. Implements the logic in Slices.

Complex 4-bit Multiplier, Slices

Block: Complex 4-bit Multiplier Implemented in Slices (cmult_4bit_sl)
Block Author: Aaron Parsons
Document Author: Vinayak Nagpal

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Perform a complex multiplication (a + bi)(c di) = (ac bd) + (ad + bc)i. Implements the logic in Slices.

34 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Multiplier Latency mult_latency The latency through a multiplier.
Add Latency add_latency The latency through an adder.

Ports

Port Dir Data Type Description
a in Inherited The real component of input 1.
b in Inherited The imaginary component of input 1.
c in Inherited The real component of input 2.
d in Inherited The imaginary component of input 2.
real out Inherited ac-bd
imag out Inherited ad+bc

Description

Perform a complex multiplication (a + bi)(c di) = (ac bd) + (ad + bc)i. Implements the logic in Slices.

Complex Adder/Subtractor

Block: Complex Adder/Subtractor (complex_addsub)
Block Author: Aaron Parsons
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

This block does a complex addition and subtraction of 2 complex numbers, a and b, and spits out 2 complex numbers,
a+b and a-b.

4.2. Documentation 35

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Bit Width BitWidth The number of bits in its input.
Add Latency add_latency The latency of the adders/subtractors.

Ports

Port Dir Data Type Description
a IN 2*BitWidth

Fixed point
The first complex number whose higher BitWidth bits are its real part and lower
BitWidth bits are its imaginary part.

b IN 2*BitWidth
Fixed point

The second complex number whose higher BitWidth bits are its real part and lower
BitWidth bits are its imaginary part.

a+b OUT 2*BitWidth
Fixed point

Upper BitWidth bits are real(a)+real(b). Lower BitWidth bits are imaginary(a)-
imaginary(b).

a-b OUT 2*BitWidth
Fixed point

Upper BitWidth bits are imaginary(a)+imaginary(b). Lower BitWidth bits are
real(b)-real(a).

Description

Usage

The top output, a+b, is a complex output whose real part equals the sum of the real parts of a and b. The imaginary
part of a+b equals the difference of the imaginary parts of a and b. The bottom output, a-b, is a complex output
whose real part equals the sum of the imaginary parts of a and b.The imaginary part of a-b equals the difference of
the real parts of b and a. The latency of this block is 2*add_latency.

Complex to Real-Imag

Block: Complex to Real-Imag Block (c_to_ri)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

36 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Summary

Outputs real and imaginary components of a complex input. Useful for simplifying interconnects. See also ri_to_c.

Mask Parameters

Parame-
ter

Vari-
able

Description

Bit Width n_bits Specifies width of real/imag components. Assumed equal for both components.
Binary
Point

bin_pt Specifies the binary point location in the real/imaginary components. Assumed equal for
both components.

Ports

Port Dir Data Type Description
c in UFix_x_0 Complex input, real in MSB, imaginary in LSB.
r out Fix_x_y Real signed output, binary point specified by parameter.
i out Fix_x_y Imaginary signed output, binary point specified by parameter.

Description

Outputs real and imaginary components of a complex input. Useful for simplifying interconnects. See also ri_to_c.

DDS

Block: DDS (dds)
Block Author: Aaron Parsons
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Generates sines and cosines of different phases and outputs them in parallel.

4.2. Documentation 37

Ri_to_c.html
Ri_to_c.html

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Frequency Divisions (M) freq_div Denominator of the frequency.
Frequency (? /M * 2 * pi) freq Numerator of the frequency.
Parallel LOs num_lo Number of parallel local oscillators.
Bit Width n_bits Bit width of the outputs.
Latency latency Description

Ports

Port Dir Data Type Description
sinX OUT Fix_(n_bits)_(n_bits-1) Sine output corresponding to the Xth local oscillator.
cosX OUT Fix_(n_bits)_(n_bits-1) Cosine output corresponding to the Xth local oscillator.

Description

Usage

There are sin and cos outputs each equal to the minimum of num_lo and freq_div. If num_lo > =
freq_div/freq, then the outputs will be lo_consts. Otherwise each output will oscillate depending on the
values of freq_div and freq. If the outputs oscillate, then there will be a latency of latency and otherwise there
will be zero latency.

Decimating FIR Filter

Block: Decimating FIR Filter (dec_fir)
Block Author: Aaron Parsons
Document Author: Aaron Parsons, Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

FIR filter which can handle multiple time samples in parallel and decimates down to 1 time sample. If coefficiencts
are symmetric, it will automatically fold before multiplying.

38 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Number of Parallel
Streams

n_inputs The number of time samples which arrive in parallel.

Coefficients coeff The FIR coefficients. If this vector is symmetric, the FIR will automatically
fold before multiplying.

Bit Width Out n_bits The number of bits in each real/imag sample of the complex number that is
output.

Quantization Behav-
ior

quantiza-
tion

The quantization behavior used in converting to the output bit width.

Add Latency add_latency The latency of adders/converters.
Mult Latency mult_latencyThe latency of multipliers.

Ports

Port Dir Data Type Description
sync_in IN boolean Takes an impulse 1 cycle before input is valid.
realX IN Fix_(n_bits)_(n_bits-1) Real input X
inagX IN Fix_(n_bits)_(n_bits-1) Imaginary input X
sync_out OUT boolean Will be high the clock cycle before dout is valid.

Description

Usage

User specifies the number of parallel streams to be decimated to one complex number. Inputs are multiplied by
the coefficients and added together to form dout. Bit Width Out specifies the widths of the real and imaginary
components of the complex number to be output (Ex. if Bit Width Out = 8, then dout will be 16 bits, 8 for the real and
imaginary components).

Enabled Delay in BRAM

Block: The Enabled Delay in BRAM Block (delay_bram_en_plus)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

4.2. Documentation 39

CASPER Toolflow, Release 0.1

Summary

A delay block that uses BRAM for its storage and only shifts when enabled. However, BRAM latency cannot be
enabled, so output appears bram_latency clocks after an enable.

Mask Parameters

Parameter Variable Description
Enabled Delays DelayLen The length of the delay.
Extra (unenabled) delay for BRAM Latency bram_latency The latency of the underlying storage BRAM.

Ports

Port Dir Data Type Description
in in ??? The signal to be delayed.
en in ??? To be asserted when input is valid.
out out ??? The delayed signal.
valid out ??? Asserted when output is valid.

Description

A delay block that uses BRAM for its storage and only shifts when enabled. However, BRAM latency cannot be
enabled, so output appears bram_latency clocks after an enable.

Programmable Delay in BRAM

Block: The Programmable Delay in BRAM Block (delay_bram_prog)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A delay block that uses BRAM for its storage and has a run-time programmable delay. When delay is changed, some
randomly determined samples will be inserted/dropped from the buffered stream.

40 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
Max Delay (2?) MaxDelay The maximum length of the delay (i.e. the BRAM Size).
BRAM Latency bram_latency The latency of the underlying storage BRAM.

Ports

Port Dir Data Type Description
din in ??? The signal to be delayed.
delay in ??? The run-time programmable delay length.
dout in ??? The delayed signal.

Description

A delay block that uses BRAM for its storage and has a run-time programmable delay. When delay is changed, some
randomly determined samples will be inserted/dropped from the buffered stream.

Delay in BRAM

Block: The Delay in BRAM Block (delay_bram)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A delay block that uses BRAM for its storage.

Mask Parameters

Parameter Variable Description
Delay Length DelayLen The length of the delay.
BRAM Latency bram_latency The latency of the underlying storage BRAM.

4.2. Documentation 41

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
in in ??? The signal to be delayed.
out out ??? The delayed signal.

Description

A delay block that uses BRAM for its storage.

Complex Delay

Block: Complex Delay (delay_complex)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A delay block that treats its input as complex, splits it into real and imaginary components, delays each component
by a specified amount, and then re-joins them into a complex output. The underlying storage is user-selectable (either
BRAM or SLR16 elements). The reason for this is wide (36 bit) delays make adjacent multipliers in multiplier-bram
pairs unusable.

Mask Parameters

Parame-
ter

Variable Description

Delay
Depth

de-
lay_depth

The length of the delay.

Bit Width n_bits Specifies the width of the real/imaginary components. Width of each component is
assumed equal.

Use
BRAM

use_bram Set to 1 to implement the delay using BRAM. If 0, the delay will be implemented using
SLR16 elements.

42 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
in in ??? The complex signal to be delayed.
out out ??? The delayed complex signal.

Description

A delay block that treats its input as complex, splits it into real and imaginary components, delays each component
by a specified amount, and then re-joins them into a complex output. The underlying storage is user-selectable (either
BRAM or SLR16 elements). The reason for this is wide (36 bit) delays make adjacent multipliers in multiplier-bram
pairs unusable.

Delay in Slices

Block: The Delay in Slices Block (delay_slr)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A delay block that uses slices (SLR16s) for its storage.

Mask Parameters

Parameter Variable Description
Delay Length DelayLen The length of the delay.

Ports

Port Dir Data Type Description
in in ??? The signal to be delayed.
out out ??? The delayed signal.

4.2. Documentation 43

CASPER Toolflow, Release 0.1

Description

A delay block that uses slices (SLR16s) for its storage.

Programmable Wideband Delay

Block: Programmable Wideband Delay (delay_wideband_prog)
Block Author: Jason Manley, Mekhala Muley
Document Author: Jason Manley, Mekhala Muley

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A delay block that uses single port BRAM for its storage and has a run-time programmable delay for simultaneous
inputs.

Mask Parameters

Parameter Variable Description
Max Delay max_delay The maximum length of delay which can be provided (in sample clock

cycles).
Number of simultaneous in-
puts (2^?)

n_inputs_bitsNumber of sequential time series inputs (specified in power of 2) re-
quired to the delay block.

BRAM Latency bram_latencyThe latency of the underlying storage BRAM.
Select type of BRAM bram_type Selects the type of BRAM (Single or Dual Port) to be used by the

delay module.

Ports

Port Dir Data Type Description
delay in Unsigned Inte-

ger
The runtime programmable delay value.

sync in Boolean Sync pulse to synchronize this delay block with the other blocks in the de-
sign.

data_in in ??? The simultaneous signals to be delayed.
sync_out out boolean Synchronizing output pulse from the delay block.
data_out out inherited The delayed simultaneous outputs.

44 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Description

A delay block that uses single port BRAM for its storage and has a run-time programmable delay for sequential time
series inputs. The block incurs a minimum delay as specified at the bottom of the block name. By default this is added
to the user’s requested delay.

Maximum delay should be in terms of powers of 2, if not, the block converts the maximum delay provided by user to
the nearest power of 2.

Single port BRAM introduces glitches in the output if the programmable runtime delay is increased campared to the
last entry. The minimum acceptable BRAM latency (Single and Dual Port) is 1, by default kept at 4.

DRAM Vector Accumulator

Block: DRAM Vector Accumulator (dram_vacc)
Block Author: Arash Parsa
Document Author: Jason Manley

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A vector accumulator for very large vector lengths using the BEE2’s DRAM.

Mask Parameters

Parameter Variable Description
??? ??? ???

Ports

Port Dir Data Type Description
Port Name Port Direction Port data type Port Description
Port Name in ufix_x_y Port Description
Port Name in inherited Port Description

4.2. Documentation 45

CASPER Toolflow, Release 0.1

Description

A vector accumulator for very large vector lengths using the BEE2’s DRAM.

DRAM Vector Accumulator Test Vector Generator

Block: DRAM Vector Accumulator Test Vector Generator (dram_vacc_tvg)
Block Author: Jason Manley, Arash Parsa
Document Author: Jason Manley

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Comprehensive TVG for the DRAM Vector Accumulator.

Mask Parameters

Parameter Variable Description
Number of Vectors len

Ports

Port Dir Data Type Description
tvg_sel in boolean
sync_in in boolean
data_in in ufix_32_0
valid_in in boolean
sync_out out boolean
data_out out ufix_32_0
valid_out out boolean

Description

Comprehensive TVG for the DRAM Vector Accumulator.

46 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Edge Detect

Block: The Edge Detect Block (edge)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Outputs true if a boolean input signal is not equal to its value during the last clock.

Mask Parameters

None.

Ports

Port Dir Data Type Description
in in Boolean Input boolean signal.
out out Boolean Edge detected output boolean signal.

Description

Outputs true if a boolean input signal is not equal to its value during the last clock.

Real-sampled Biplex FFT (demuxed by 2)

Block: Real-sampled Biplex FFT (with output demuxed by 2) (fft_biplex_real_2x)
Block Author: Aaron Parsons
Block Maintainer: Andrew Martens
Document Author: Aaron Parsons, Andrew Martens

4.2. Documentation 47

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a two real streams. Thus, a biplex core (which can do 2 complex FFTs) can transform 4 real streams.
Twiddle factor, and other logic sharing, allows multiples of 4 input streams to be processed simultaneously with
minimal resource increases. Only positive frequencies are output (negative frequencies are the mirror images of their
positive counterparts). Data is output in normal frequency order, meaning that channel 0 (corresponding to DC) is
output first, followed by channel 1, on up to channel 2N 1 1. Real inputs 0 and 2 share one output port (with the data
for 0 coming first, then the data for 2), likewise for inputs 1 and 3, and so on.

Please note that this documentation refers to the latest version of this block and may not be valid for older versions,
please look in the history for older versions of this documentation.

48 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description Recom-
mended
Value

Number simul-
taneous inputs
(4*?)

n_inputsThe number of inputs the FFT is to process as a multiple of 4.

Size of FFT:
(2^?)

FFT-
Size

The number of channels computed in the complex FFT core. The number
of channels output for each real stream is half of this.

Input bit width in-
put_bit_width

The number of bits in each real and imaginary sample as they are input to
the FFT. If bit growth is not chosen, each FFT stage will round numbers
back down to this number of bits after performing a butterfly computa-
tion. If bit growth is chosen, the number of bits will increase by one with
every FFT stage up to the maximum specified.

To make
optimal use
of BRAMs
=> 18 For
low FFT
noise => 25

Input binary
point

bin_pt The position of the binary point in the input data

Coefficient Bit
Width

co-
eff_bit_width

The number of bits used in the real and imaginary part of the twiddle
factors at each stage.

18

Asynchronous
operation

async Whether valid data is input on every clock cycle or is flagged via the en
input port.

Quantization
Behavior

quan-
ti-
za-
tion

Specifies the rounding behaviour used at the end of each twiddle and
butterfly computation to return to the number of bits if bit growth is not
enabled or to keep the number of bits at the maximum specified.

NOT Trun-
cate.

Overflow
Behavior

over-
flow

Indicates the behaviour of the FFT core when the value of a sample ex-
ceeds what can be expressed in the specified bit width.

Add Latency add_latencyLatency through adders in the FFT. 1
Mult Latency mult_latencyLatency through multipliers in the FFT. 2
BRAM La-
tency

bram_latencyLatency through BRAM in the FFT. 2 For designs
aimed at >
200MHz =>
3

Convert La-
tency

conv_latencyLatency through blocks used to reduce bit widths after twiddle and but-
terfly stages.

1 For designs
aimed at >
180Mhz =>
2

Number bits
above which
to store stage’s
coefficients in
BRAM (2^?
bits)

co-
effs_bit_limit

Determines the threshold at which the twiddle coefficients in a stage are
stored in BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits
of BRAM
used)

Number bits
above which
to implement
stage’s delays
in BRAM (2^?
bits)

de-
lays_bit_limit

Determines the threshold at which data delays in a stage are stored in
BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits
of BRAM
used)

BRAM sharing
in coeff storage

co-
eff_sharing

Real and imaginary components of twiddle factors can be generated from
the same set of coefficients, reducing BRAM use at the cost of some
logic.

Store a fraction
of coeff factors
where useful

co-
eff_decimation

The full set of twiddle factors can be generated from a smaller set, reduc-
ing BRAM use at the cost of the some logic.

Maximum
fanout

max_fanoutThe maximum fanout the twiddle factors are allowed to experience be-
tween where they are generated and when they are multiplied with the
data stream. As the coefficients are shared, large fanout can occur which
can affect maximum timing achievable. Decreasing the maximum fanout
allowed should increase possible performance at the expense of some
logic.

Multiplier
specifica-
tion (0=core,
1=embedded,
2=behavioural)
(left=1st stage)

mult_specArray of values allowing exact specification of how multipliers are im-
plemented at each stage. A single value indicates all multipliers be im-
plemented in the same way.

2 (behavioral
HDL) for
each stage

Bit growth in-
stead of shift-
ing

bit_growthBit growth at every stage in the FFT can result in overflows which affect
data quality. This can be prevented by dividing the data by two on the
output of every stage, or by increasing the number of bits in the data
stream by one bit. Shifting decreases the dynamic range and possible
data quality whereas bit growth increases the resource requirements.

Max bits to
growth to

max_bitsThe maximum number of bits to increase the data path to when the bit
growth option is chosen. Shifting is used for FFT stages after this.

Hardcode shift
schedule

hard-
code_shifts

When shifting to prevent overflow, use a fixed shifting schedule. This
uses less logic and increases performance when compared to using a dy-
namic shift schedule.

Shift schedule shift_scheduleWhen using a fixed shift schedule, use the shift schedule specified. A ‘1’
at position M in the array indicates a shift for the M’th FFT stage, a ‘0’
indicates no shift.

DSP48 adders
in butterfly

dsp48_addersThe butterfly operation at each stage consists of two adders and two sub-
tracters that can be implemented using DSP48 units instead of logic.

on (enabled)
to reduce
logic use.

4.2. Documentation 49

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description Recom-
mended
Use

sync in Boolean sync is used to indicate the last data word of a frame of input
data. When the block is in asynchronous operating mode an ac-
tive signal is aligned with en being active. When the block is in
synchronous operating mode, a an active pulse is aligned with the
clock cycle before the first valid data of a new input frame.

Ensure the
sync period
complies with
the memo
describing
correct use.

shift in Unsigned Sets the shifting schedule through the FFT to prevent overflow. Bit
0 specifies the behavior of stage 0, bit 1 of stage 1, and so on. If a
stage is set to shift (with bit = 1), then every sample is divided by
2 at the output of that stage.

pol in Signed con-
sisting of one
(Input Bit
Width) width
signals per
input.

The time-domain stream(s) to be channelised. Data ampli-
tude should
not exceed 0.5
(divide data by
2 pre-FFT)

en in Boolean When asynchronous operation is chosen, this port indicates that
valid input data is available on all input data ports.

sync_outout Boolean Indicates that data out will be valid next clock cycle when in syn-
chronous mode, or when dvalid is next active.

pol_outout Inherited The frequency channels.
of out Unsigned,

one bit per 4
inputs

Indication of internal arithmetic overflow. Not time aligned with
data. The most significant bit is the flag for pol0_in, pol1_in,
pol2_in and pol3_in etc.

dvalid out Boolean Indicates that valid data is available on all output data ports.

Description

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a two real streams. Thus, a biplex core (which can do 2 complex FFTs) can transform 4 real streams.
Twiddle factor, and other logic sharing, allows multiples of 4 input streams to be processed simultaneously with
minimal resource increases. Only positive frequencies are output (negative frequencies are the mirror images of their
positive counterparts). Data is output in normal frequency order, meaning that channel 0 (corresponding to DC) is
output first, followed by channel 1, on up to channel 2N 1 1. Real inputs 0 and 2 share one output port (with the data
for 0 coming first, then the data for 2), likewise for inputs 1 and 3, and so on.

Real-sampled Biplex FFT (demuxed by 4)

Block: Real-sampled Biplex FFT (with output demuxed by 4) (fft_biplex_real_4x)
Block Author: Aaron Parsons
Block Maintainer: Andrew Martens
Document Author: Aaron Parsons, Andrew Martens

50 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a two real streams. Thus, a biplex core (which can do 2 complex FFTs) can transform 4 real
streams. Twiddle factor, and other logic sharing, allows multiples of 4 input streams to be processed simultaneously
with minimal resource increases. All frequencies (both positive and negative) are output (negative frequencies are
the mirror images of their positive counterparts). Data is output in normal frequency order, meaning that channel 0
(corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1.

4.2. Documentation 51

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description Recom-
mended
Value

Number simul-
taneous inputs
(4*?)

n_inputsThe number of inputs the FFT is to process as a mutliple of 4.

Size of FFT:
(2^?)

FFT-
Size

The number of channels computed in the complex FFT core. The number
of channels output for each real stream is half of this.

Input bit width in-
put_bit_width

The number of bits in each real and imaginary sample as they are input to
the FFT. If bit growth is not chosen, each FFT stage will round numbers
back down to this number of bits after performing a butterfly computa-
tion. If bit growth is chosen, the number of bits will increase by one with
every FFT stage up to the maximum specified.

To make
optimal use
of BRAMs
=> 18 For
low FFT
noise => 25

Input binary
point

bin_pt The position of the binary point in the input data

Coefficient Bit
Width

co-
eff_bit_width

The number of bits used in the real and imaginary part of the twiddle
factors at each stage.

18

Asynchronous
operation

async Whether valid data is input on every clock cycle or is flagged via the en
input port.

Quantization
Behavior

quan-
ti-
za-
tion

Specifies the rounding behavior used at the end of each twiddle and but-
terfly computation to return to the number of bits specified above.

NOT Trun-
cate.

Overflow
Behavior

over-
flow

Indicates the behavior of the FFT core when the value of a sample ex-
ceeds what can be expressed in the specified bit width.

Wrap as
Saturate will
not make
overflow cor-
ruption better
behaved.

Add Latency add_latencyLatency through adders in the FFT. 1
Mult Latency mult_latencyLatency through multipliers in the FFT. 2
BRAM La-
tency

bram_latencyLatency through BRAM in the FFT. 2 For designs
aimed at >
200MHz =>
3

Convert La-
tency

conv_latencyLatency through blocks used to reduce bit widths after twiddle and but-
terfly stages.

1 For designs
aimed at >
180Mhz => 2

Number bits
above which
to store stage’s
coefficients in
BRAM (2^?
bits)

co-
effs_bit_limit

Determines the threshold at which the twiddle coefficients in a stage are
stored in BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

Number bits
above which
to implement
stage’s delays
in BRAM (2^?
bits)

de-
lays_bit_limit

Determines the threshold at which data delays in a stage are stored in
BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

BRAM sharing
in coeff storage

co-
eff_sharing

Real and imaginary components of twiddle factors can be generated from
the same set of coefficients, reducing BRAM use at the cost of some
logic.

Store a fraction
of coeff factors
where useful

co-
eff_decimation

The full set of twiddle factors can be generated from a smaller set, re-
ducing BRAM use at the cost of the some logic.

Maximum
fanout

max_fanoutThe maximum fanout the twiddle factors are allowed to experience be-
tween where they are generated and when they are multiplied with the
data stream. As the coefficients are shared, large fanout can occur which
can affect maximum timing achievable. Decreasing the maximum fanout
allowed should increase possible performance at the expense of some
logic.

Multiplier
specifica-
tion (0=core,
1=embedded,
2=behavioural)
(left=1st stage)

mult_specArray of values allowing exact specification of how multipliers are im-
plemented at each stage. A single value indicates all multipliers be im-
plemented in the same way.

2 (behavioral
HDL) for
each stage

Bit growth in-
stead of shift-
ing

bit_growthBit growth at every stage in the FFT can result in overflows which affect
data quality. This can be prevented by dividing the data by two on the
output of every stage, or by increasing the number of bits in the data
stream by one bit. Shifting decreases the dynamic range and possible
data quality whereas bit growth increases the resource requirements.

Max bits to
growth to

max_bitsThe maximum number of bits to increase the data path to when the bit
growth option is chosen. Shifting is used for FFT stages after this.

Hardcode shift
schedule

hard-
code_shifts

When shifting to prevent overflow, use a fixed shifting schedule. This
uses less logic and increases performance when compared to using a
dynamic shift schedule.

Shift schedule shift_scheduleWhen using a fixed shift schedule, use the shift schedule specified. A ‘1’
at position M in the array indicates a shift for the M’th FFT stage, a ‘0’
indicates no shift.

DSP48 adders
in butterfly

dsp48_addersThe butterfly operation at each stage consists of two adders and two sub-
tracters that can be implemented using DSP48 units instead of logic.

on (enabled)
to reduce
logic used.

52 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description Recom-
mended
Use

sync in Boolean sync is used to indicate the last data word of a frame of input
data. When the block is in asynchronous operating mode an ac-
tive signal is aligned with en being active. When the block is in
synchronous operating mode, a an active pulse is aligned with the
clock cycle before the first valid data of a new input frame.

Ensure the
sync period
complies with
the memo
describing
correct use.

shift in Unsigned Sets the shifting schedule through the FFT to prevent overflow. Bit
0 specifies the behavior of stage 0, bit 1 of stage 1, and so on. If a
stage is set to shift (with bit = 1), then every sample is divided by
2 at the output of that stage.

pol in Signed con-
sisting of one
(Input Bit
Width) width
signals per
input.

The time-domain stream(s) to be channelised. Data ampli-
tude should
not exceed 0.5
(divide data by
2 pre-FFT)

en in Boolean When asynchronous operation is chosen, this port indicates that
valid input data is available on all input data ports.

sync_outout Boolean Indicates that data out will be valid next clock cycle.
pol_outout Inherited The frequency channels.
of out Unsigned,

one bit per 4
inputs

Indication of internal arithmetic overflow. Not time aligned with
data. The most significant bit is the flag for pol0_in, pol1_in,
pol2_in and pol3_in etc.

Description

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a two real streams. Thus, a biplex core (which can do 2 complex FFTs) can transform 4 real
streams. Twiddle factor, and other logic sharing, allows multiples of 4 input streams to be processed simultaneously
with minimal resource increases. All frequencies (both positive and negative) are output (negative frequencies are
the mirror images of their positive counterparts). Data is output in normal frequency order, meaning that channel 0
(corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1.

FFT

Block: FFT (fft)
Block Author: Aaron Parsons
Block Maintainer: Andrew Martens
Document Author: Aaron Parsons, Andrew Martens

4.2. Documentation 53

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Computes the Fast Fourier Transform with 2N channels for time samples presented 2P at a time in parallel. Uses a
biplex FFT architecture under the hood which has been extended to handled time samples in parallel. For P = 0,
this block accepts two independent, parallel streams (labelled as pols) and computes the FFT of each independently
(the biplex architecture provides this for free). Data is output in normal frequency order, meaning that channel 0
(corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1 (which can be interpreted as
channel -1). When multiple time samples are presented in parallel on the input, multiple frequency samples are output
in parallel.

54 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description Recom-
mended
Value

Number si-
multaneous
streams

n_streamsThe number of input data streams to be processed in parallel. Each
stream consists of a set of parallel inputs set by another parameter (see
Number of Simultaneous Inputs)

Size of FFT:
(2^?)

FFT-
Size

The number of channels computed in the complex FFT core. The number
of channels output for each real stream is half of this.

Input Bit Width in-
put_bit_width

The number of bits in each real and imaginary sample as they are carried
through the FFT. Each FFT stage will round numbers back down to this
number of bits after performing a butterfly computation if bit growth is
not enabled.

To make
optimal use
of BRAM =>
18 For low
FFT noise
=> 25

Input binary
point

bin_pt The position of the binary point in the input data.

Coefficient Bit
Width

co-
eff_bit_width

The number of bits used in the real and imaginary part of the twiddle
factors at each stage.

18

Number of Si-
multaneous In-
puts: (2^?)

n_inputsThe number of parallel time samples which are presented to the FFT core
each clock. This must be at least 22. The number of output ports is half
of this value.

Unscramble
output (ie,
put channels
in canonical
order)

un-
scram-
ble

The FFT inherently produces data in an order that requires unscrambling
before being used by many algorithms. This requires resources and can
limit performance and so should be disabled if not necessary.

Asynchronous
operation

async Whether valid data is input on every clock cycle or is flagged via the en
input port.

Quantization
Behavior

quan-
ti-
za-
tion

Specifies the rounding behavior used at the end of each twiddle and but-
terfly computation to return to the number of bits specified above.

NOT Trun-
cate.

Overflow
Behavior

over-
flow

Indicates the behavior of the FFT core when the value of a sample ex-
ceeds what can be expressed in the specified bit width.

Wrap as
Saturate will
not make
overflow cor-
ruption better
behaved.

Add Latency add_latencyLatency through adders in the FFT. 1
Mult Latency mult_latencyLatency through multipliers in the FFT. 2
BRAM La-
tency

bram_latencyLatency through BRAM in the FFT. 2 For designs
aimed at >
200MHz =>
3

Convert La-
tency

conv_latencyLatency through blocks used to reduce bit widths after twiddle and but-
terfly stages.

1 For designs
aimed at >
180Mhz => 2

Number bits
above which
to store stage’s
coefficients in
BRAM (2^?
bits)

co-
effs_bit_limit

Determines the threshold at which the twiddle coefficients in a stage are
stored in BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

Number bits
above which
to implement
stage’s delays
in BRAM (2^?
bits)

de-
lays_bit_limit

Determines the threshold at which data delays in a stage are stored in
BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

BRAM sharing
in coeff storage

co-
eff_sharing

Real and imaginary components of twiddle factors can be generated from
the same set of coefficients, reducing BRAM use at the cost of some
logic.

Store a fraction
of coeff factors
where useful

co-
eff_decimation

The full set of twiddle factors can be generated from a smaller set, re-
ducing BRAM use at the cost of the some logic.

Generate
coeffs with
multipliers
where useful

co-
eff_generation

Generate twiddle factors in the internal fft_direct block using an oscilla-
tor with feedback.

To reduce
BRAM us-
age => on.
To reduce
multiplier
usage => off

Number
calibration
locations when
generating
coeffs (2^?)

cal_bitsWhen generating twiddle factors with an oscillator with feedback, refer-
ence values are used to calibrate the complex exponential generated.

For low
BRAM us-
age => 1. For
high qual-
ity twiddle
factors => 9.

Feedback rota-
tion vector res-
olution

n_bits_rotationWhen generating the twiddle factors, the resolution of the vector deter-
mines how much error accumulates.

For low error
=> 25. For
low BRAM
usage => 18.

Maximum
fanout

max_fanoutThe maximum fanout the twiddle factors are allowed to experience be-
tween where they are generated and when they are multiplied with the
data stream. As the coefficients are shared, large fanout can occur which
can affect maximum timing achievable. Decreasing the maximum fanout
allowed should increase possible performance at the expense of some
logic.

Multiplier
specifica-
tion (0=core,
1=embedded,
2=behavioural)
(left=1st stage)

mult_specArray of values allowing exact specification of how multipliers are im-
plemented at each stage.

2 (behavioral
HDL) for
each stage

Bit growth in-
stead of shift-
ing

bit_growthBit growth at every stage in the FFT can result in overflows which affect
data quality. This can be prevented by dividing the data by two on the
output of every stage, or by increasing the number of bits in the data
stream by one bit. Shifting decreases the dynamic range and possible
data quality whereas bit growth increases the resource requirements.

Max bits to
growth to

max_bitsThe maximum number of bits to increase the data path to when the bit
growth option is chosen. Shifting is used for FFT stages after this.

Hardcode shift
schedule

hard-
code_shifts

When shifting to prevent overflow, use a fixed shifting schedule. This
uses less logic and increases performance when compared to using a
dynamic shift schedule.

Shift schedule shift_scheduleWhen using a fixed shift schedule, use the shift schedule specified. A ‘1’
at position M in the array indicates a shift for the M’th FFT stage, a ‘0’
indicates no shift.

DSP48 adders
in butterfly

dsp48_addersThe butterfly operation at each stage consists of two adders and two sub-
tracters that can be implemented using DSP48 units instead of logic.

on (enabled)
to reduce
logic used.

4.2. Documentation 55

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description Recom-
mended
Use

sync in Boolean sync is used to indicate the last data word of a frame of input
data. When the block is in asynchronous operating mode an ac-
tive signal is aligned with en being active. When the block is in
synchronous operating mode, a an active pulse is aligned with the
clock cycle before the first valid data of a new input frame.

Ensure the
sync period
complies with
the memo
describing
correct use.

shift in Unsigned Sets the shifting schedule through the FFT to prevent overflow.
Bit 0 specifies the behavior of stage 0, bit 1 of stage 1, and so on.
If a stage is set to shift (with bit = 1), then every sample is divided
by 2 at the output of that stage.

in<stream><inp
ut>

in Signed con-
sisting of one
(Input Bit
Width) width
signals per
input.

The time-domain stream(s) to be channelised. Data ampli-
tude should
not exceed 0.5
(divide data by
2 pre-FFT)

en in Boolean When asynchronous operation is chosen, this port indicates that
valid input data is available on all input data ports.

sync_outout Boolean Indicates that data out will be valid next clock cycle.
out<stream><in
put>

out Inherited The frequency channels.

of out Unsigned,
one bit per
input stream

Indication of internal arithmetic overflow. Not time aligned with
data. The most significant bit is the flag for input stream 0 etc.

Description

Computes the Fast Fourier Transform with 2N channels for time samples presented 2P at a time in parallel. Uses a
biplex FFT architecture under the hood which has been extended to handled time samples in parallel. For P = 0,
this block accepts two independent, parallel streams (labelled as pols) and computes the FFT of each independently
(the biplex architecture provides this for free). Data is output in normal frequency order, meaning that channel 0
(corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1 (which can be interpreted as
channel -1). When multiple time samples are presented in parallel on the input, multiple frequency samples are output
in parallel.

Real-sampled Wideband FFT

Block: Real-sampled Wideband FFT (fft_wideband_real)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

56 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a single real stream using half the normal resources (this requires at least 4 time samples in parallel).
Only positive frequencies are output (negative frequencies are the mirror images of their positive counterparts), so
there the number of output ports is half the number of input ports. Uses a biplex FFT architecture under the hood
which has been extended to handle time samples in parallel. Data is output in normal frequency order, meaning that
channel 0 (corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1 1.

4.2. Documentation 57

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description Recom-
mended
Value

Number si-
multaneous
streams

n_streamsThe number of input data streams to be processed in parallel. Each
stream consists of a set of parallel inputs set by another parameter (see
Number of Simultaneous Inputs)

Size of FFT:
(2^?)

FFT-
Size

The number of channels computed in the complex FFT core. The number
of channels output for each real stream is half of this.

Input Bit Width in-
put_bit_width

The number of bits in each real and imaginary sample as they are carried
through the FFT. Each FFT stage will round numbers back down to this
number of bits after performing a butterfly computation if bit growth is
not enabled.

To make
optimal use
of BRAM =>
18 For low
FFT noise
=> 25

Input binary
point

bin_pt The position of the binary point in the input data.

Coefficient Bit
Width

co-
eff_bit_width

The number of bits used in the real and imaginary part of the twiddle
factors at each stage.

18

Number of Si-
multaneous In-
puts: (2^?)

n_inputsThe number of parallel time samples which are presented to the FFT core
each clock. This must be at least 22. The number of output ports is half
of this value.

Unscramble
output (ie,
put channels
in canonical
order)

un-
scram-
ble

The FFT inherently produces data in an order that requires unscrambling
before being used by many algorithms. This requires resources and can
limit performance and so should be disabled if not necessary.

Asynchronous
operation

async Whether valid data is input on every clock cycle or is flagged via the en
input port.

Quantization
Behavior

quan-
ti-
za-
tion

Specifies the rounding behavior used at the end of each twiddle and but-
terfly computation to return to the number of bits specified above.

NOT Trun-
cate.

Overflow
Behavior

over-
flow

Indicates the behavior of the FFT core when the value of a sample ex-
ceeds what can be expressed in the specified bit width.

Wrap as
Saturate will
not make
overflow cor-
ruption better
behaved.

Add Latency add_latencyLatency through adders in the FFT. 1
Mult Latency mult_latencyLatency through multipliers in the FFT. 2
BRAM La-
tency

bram_latencyLatency through BRAM in the FFT. 2 For designs
aimed at >
200MHz =>
3

Convert La-
tency

conv_latencyLatency through blocks used to reduce bit widths after twiddle and but-
terfly stages.

1 For designs
aimed at >
180Mhz => 2

Number bits
above which
to store stage’s
coefficients in
BRAM (2^?
bits)

co-
effs_bit_limit

Determines the threshold at which the twiddle coefficients in a stage are
stored in BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

Number bits
above which
to implement
stage’s delays
in BRAM (2^?
bits)

de-
lays_bit_limit

Determines the threshold at which data delays in a stage are stored in
BRAM. Below this threshold distributed RAM is used.

8 (ensures
at least
2^8=256
bits out of
18432 bits of
BRAM used)

BRAM sharing
in coeff storage

co-
eff_sharing

Real and imaginary components of twiddle factors can be generated from
the same set of coefficients, reducing BRAM use at the cost of some
logic.

Store a fraction
of coeff factors
where useful

co-
eff_decimation

The full set of twiddle factors can be generated from a smaller set, re-
ducing BRAM use at the cost of the some logic.

Generate
coeffs with
multipliers
where useful

co-
eff_generation

Generate twiddle factors in the internal fft_direct block using an oscilla-
tor with feedback.

To reduce
BRAM us-
age => on.
To reduce
multiplier
usage => off

Number
calibration
locations when
generating
coeffs (2^?)

cal_bitsWhen generating twiddle factors with an oscillator with feedback, refer-
ence values are used to calibrate the complex exponential generated.

For low
BRAM us-
age => 1. For
high qual-
ity twiddle
factors => 9.

Feedback rota-
tion vector res-
olution

n_bits_rotationWhen generating the twiddle factors, the resolution of the vector deter-
mines how much error accumulates.

For low error
=> 25. For
low BRAM
usage => 18.

Maximum
fanout

max_fanoutThe maximum fanout the twiddle factors are allowed to experience be-
tween where they are generated and when they are multiplied with the
data stream. As the coefficients are shared, large fanout can occur which
can affect maximum timing achievable. Decreasing the maximum fanout
allowed should increase possible performance at the expense of some
logic.

Multiplier
specifica-
tion (0=core,
1=embedded,
2=behavioural)
(left=1st stage)

mult_specArray of values allowing exact specification of how multipliers are im-
plemented at each stage.

2 (behavioral
HDL) for
each stage

Bit growth in-
stead of shift-
ing

bit_growthBit growth at every stage in the FFT can result in overflows which affect
data quality. This can be prevented by dividing the data by two on the
output of every stage, or by increasing the number of bits in the data
stream by one bit. Shifting decreases the dynamic range and possible
data quality whereas bit growth increases the resource requirements.

Max bits to
growth to

max_bitsThe maximum number of bits to increase the data path to when the bit
growth option is chosen. Shifting is used for FFT stages after this.

Hardcode shift
schedule

hard-
code_shifts

When shifting to prevent overflow, use a fixed shifting schedule. This
uses less logic and increases performance when compared to using a
dynamic shift schedule.

Shift schedule shift_scheduleWhen using a fixed shift schedule, use the shift schedule specified. A ‘1’
at position M in the array indicates a shift for the M’th FFT stage, a ‘0’
indicates no shift.

DSP48 adders
in butterfly

dsp48_addersThe butterfly operation at each stage consists of two adders and two sub-
tracters that can be implemented using DSP48 units instead of logic.

on (enabled)
to reduce
logic used.

58 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description Recom-
mended
Use

sync in Boolean sync is used to indicate the last data word of a frame of input
data. When the block is in asynchronous operating mode an ac-
tive signal is aligned with en being active. When the block is in
synchronous operating mode, a an active pulse is aligned with the
clock cycle before the first valid data of a new input frame.

Ensure the
sync period
complies with
the memo
describing
correct use.

shift in Unsigned Sets the shifting schedule through the FFT to prevent overflow.
Bit 0 specifies the behavior of stage 0, bit 1 of stage 1, and so on.
If a stage is set to shift (with bit = 1), then every sample is divided
by 2 at the output of that stage.

in<stream><inp
ut>

in Signed con-
sisting of one
(Input Bit
Width) width
signals per
input.

The time-domain stream(s) to be channelised. Data ampli-
tude should
not exceed 0.5
(divide data by
2 pre-FFT)

en in Boolean When asynchronous operation is chosen, this port indicates that
valid input data is available on all input data ports.

sync_outout Boolean Indicates that data out will be valid next clock cycle.
out<stream><in
put>

out Inherited The frequency channels.

of out Unsigned,
one bit per
input stream

Indication of internal arithmetic overflow. Not time aligned with
data. The most significant bit is the flag for input stream 0 etc.

Description

Computes the real-sampled Fast Fourier Transform using the standard Hermitian conjugation trick to use a complex
core to transform a single real stream using half the normal resources (this requires at least 4 time samples in parallel).
Only positive frequencies are output (negative frequencies are the mirror images of their positive counterparts), so
there the number of output ports is half the number of input ports. Uses a biplex FFT architecture under the hood
which has been extended to handled time samples in parallel. Data is output in normal frequency order, meaning that
channel 0 (corresponding to DC) is output first, followed by channel 1, on up to channel 2N 1 1.

Programmable Fine Delay w/ Fringe stop

Block: Programmable fine delay with fringe stop (finedelay_fstop_prog)
Block Author: Mekhala Muley, GMRT, India.
Document Author: Mekhala Muley, GMRT, India.

4.2. Documentation 59

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

This block performs the fine delay correction along with the fringe stop. It accepts the simultaneous stream of data
from the FFT module and has a run time programmable fine delay correction along with the fringe stopping.

Note: This block is specifically compatible with the “fft_wideband_real” module. For other FFT modules changes
will be required in this block depending upon output of the FFT module used in the design.

Mask Parameters

Parameter Vari-
able

Description

Number of simultaneous in-
puts

n_input Number of simultaneous inputs (in frequency domain) from the FFT
module.

Number of FFT channels fft_len Number of channels in the FFT
FFT input bitwidth fft_bits Number of bits in each real and imaginary samples obtained from the

FFT module.
Sine-Cos LUT input bitwidth theta_bitsAddress bitwidth required for the SineCos LUT and hence decides the

resolution of the phase. Allowable bitwidth for Sine-Cos LUT ranges
from 3- 16.

Sine-Cos LUT output data
width

sine_cos_bitsData width of the sine cos LUT.

Maximum number of FFT cy-
cles (Rate of change of fringe
= 2^?)

fft_cycle_bitsNumber of FFT cycles after which the rate of change of fringe needs to
be applied. The number of FFT cycles are specified in terms of powers
of 2.

60 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data
Type

Description

sync In BooleanIndicates the next clock cycle which contains valid data.
theta_fractIn Un-

signed
Sets the integer number required for fine delay correction.The bitwidth is equal to the address
width for SineCos LUT. The method of calculating the range of integer required for the fine
delay correction is explained in Description.

theta_fsIn Un-
signed

Sets the integer value equivalent to the initial phase value for fringe stop . The bitwidth is
equal to the address width for SineCos LUT. Hence the possible range for initial phase varies
from 0 to 2^theta_bits.

fft_fs In Un-
signed

Sets the number of FFT cycles after which fringe update rate need to be applied.

en_theta_fsIn Un-
signed

This is the one bit control signal required to upload the new initial phase required for fringe
stop. The new initial phase value gets loaded only at the posedge of this signal.

pol_in In In-
her-
ited

The frequency domain stream from the FFT module.

sync_outOut BooleanIndicates that data out will be valid next clock cycle.
out Out In-

her-
ited

The fine delay and fringe stop corrected frequency channels.

Description

This block performs the fine delay correction along with the fringe stop. This block accepts the simultaneous stream
of data from the FFT module and has a run time programmable fine delay correction along with the fringe stopping.

Note: This block is specifically compatible with the “fft_wideband_real” module. For other FFT modules changes
will be required in this block depending upon the way in which the data is output from the FFT module.

Fine Delay Correction:

Masking parameters like theta_bits and sine_cos_bits decides the resolution of the phase required for fine delay and
fringe stop.

For eg. theta_bits = 14 will generate a SineCos LUT with a depth of 2^14=16K, hence the resolution is of 0.02197
degrees. Consider the correlator design with specifications like bandwidth = 300MHz and no. of FFT channels =
fft_len = 1024, then the maximum integer value of theta_fract (i.e. max fine delay = 1 clk cycle)will be x = (2^
theta_bits)/ (fft_len/2) = 32

Thus 1/32th of the clock cycle delay can be compensated with the above parameters.

Fringe Stop:

Masking parameter fft_cycle_bits determines the maximum number of FFT cycles after which the fringe phase will be
incremented.

For eg. Let the sync period is of 2^27 clks and number of FFT points be 2^10 then the maximum number of FFT
cycles for incrementing the fringe phase by amount of resolution set for the Sine-Cos LUT = 2^27 / 2^10 = 2^17

It means that minimum rate of incrementing fringe phase by 0.02197 degrees is after 2^17 FFT cycles.

4.2. Documentation 61

CASPER Toolflow, Release 0.1

Programmable Fine Delay w/ Fringe stop, CORDIC

Block: Programmable fine delay with fringe stop using CORDIC block (finedelay_fstop_prog_cordic)
Block Author: Mekhala Muley, GMRT, India.
Document Author: Mekhala Muley, GMRT, India.

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

This block performs the fine delay correction along with the fringe stop. This block accepts the simultaneous stream
of data from the FFT module and has a run time programmable fine delay correction along with the fringe stopping.
This block uses CORDIC block which is compatible with Virtex 5 FPGA. Hence this block can be used for designs
on Virtex5 FPGA of ROACH board.

Note 1: This block is specifically compatible with the “fft_wideband_real” module. For other FFT modules changes
will be required in this block depending upon the way in which the data is output from the FFT module.

Note 2: This block requires System Generator Version 11.1 to make it compatible with Virtex 5.

Note 3: Currently the block is able to correct delay for One clock or less than one clock. It does not correct delays
which are more than one clock.

Mask Parameters

Parameter Vari-
able

Description

Number of simultaneous in-
puts

n_input Number of simultaneous inputs (in frequency domain) from the FFT
module.

Number of FFT channels fft_len Number of channels in the FFT
FFT input bitwidth fft_bits Number of bits in each real and imaginary samples obtained from the

FFT module.
CORDIC Sine-Cos input
bitwidth

theta_bits Input bitwidth required for the CORDIC SineCos block and hence
decides the resolution of the phase.

CORDIC Sine-Cos input bi-
nary bitwidth

theta_binary_bitsInput binary bitwidth of the CORDIC sine cos block.

Maximum number of FFT cy-
cles (Rate of change of fringe
= 2^?)

fft_cycle_bitsNumber of FFT cycles after which the rate of change of fringe needs
to be applied. The number of FFT cycles are specified in terms of
powers of 2.

Sync Period sync_periodDuration of the sync pulse.

62 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data
Type

Description

sync In BooleanIndicates the next clock cycle which contains valid data.
theta_fractIn Un-

signed
Sets the integer number required for fine delay correction.The bitwidth is equal to the address
width for SineCos LUT. The method of calculating the range of integer required for the fine
delay correction is explained in Description.

theta_fsIn Un-
signed

Sets the integer value equivalent to the initial phase value for fringe stop . The bitwidth is
equal to the address width for SineCos LUT. Hence the possible range for initial phase varies
from 0 to 2^theta_bits.

fft_fs In Un-
signed

Sets the number of FFT cycles after which fringe update rate need to be applied.

en_theta_fsIn Un-
signed

This is the one bit control signal required to upload the new initial phase required for fringe
stop. The new initial phase value gets loaded only at the posedge of this signal.

pol_in In In-
her-
ited

The frequency domain stream from the FFT module.

sync_outOut BooleanIndicates that data out will be valid next clock cycle.
out Out In-

her-
ited

The fine delay and fringe stop corrected frequency channels.

Description

This block performs the fine delay correction along with the fringe stop. This block accepts the simultaneous stream of
data from the FFT module and has a run time programmable fine delay correction along with the fringe stopping.This
block uses CORDIC block which is compatible with Virtex 5 FPGA. Hence this block can be used for designs on
Virtex5 FPGA of ROACH board.

Note: This block is specifically compatible with the “fft_wideband_real” module. For other FFT modules changes
will be required in this block depending upon the way in which the data is output from the FFT module.

Fine Delay Correction:

Masking parameters like theta_bits and theta_binary_bits decides the resolution of the phase required for fine delay
and fringe stop.

Resolution = (2^theta_bits * 2 * pi) / 8

For eg. theta_bits = 20 will generate a CORDIC SineCos block with a resolution of 0.000437 degrees.

Let bandwidth = 300MHz and no. of FFT channels = fft_len = 1024 then the maximum integer value of theta_fract
(i.e. max fine delay = 1 clk cycle)will be

num = (2^theta_bits * pi) / 8

x = (num * 2)/(fft_len/2) = 1608

Thus 1/1608th of the clock cycle delay can be compensated with the above parameters.

Fringe Stop:

Masking parameter fft_cycle_bits determines the maximum number of FFT cycles after which the fringe phase will
be incremented.

4.2. Documentation 63

CASPER Toolflow, Release 0.1

For eg. Let the sync period is of 2^27 clks and number of FFT points be 2^10 then the maximum number of FFT
cycles for incrementing the fringe phase by amount of resolution set for the Sine-Cos LUT = 2^27 / 2^10 = 2^17

It means that minimum rate of incrementing fringe phase by 0.000437 degrees is after 2^17 FFT cycles.

FIR Column

Block: FIR Column (fir_col)
Block Author: Aaron Parsons
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Takes in real and imaginary numbers to be multiplied by the coefficients and then the filter sums the real and imaginary
parts separately. Then both sums are output as well as a delayed version of the unchanged inputs.

Mask Parameters

Parameter Variable Description
Inputs n_inputs The number of real inputs and the number of imaginary inputs.
Coefficients coeff A vector of coefficients of this FIR. Should be the same number of coefficients as

inputs.
Add La-
tency

add_latency The latency of the internal adders.

Mult La-
tency

mult_latency The latency of the internal multipliers.

Ports

Port Dir Data Type Description
realX IN Inherited This is real input X. Its data type is inherited from the previous block.
imagX IN Inherited This is imaginary input X. Its data type is inherited from the previous block.
real_outX OUT Inherited This output is realX delayed by 1 cycle.
imag_outX OUT Inherited This output is imagX delayed by 1 cycle.
real_sum OUT Inherited This is the sum of all the realX * coefficient X.
imag_sum OUT Inherited This is the sum of all the imagX * coefficient X.

64 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Description

Usage

This block takes in a number of inputs in parallel and outputs a delayed version of them and also multiplies the inputs
by the coefficients. Then real_sum and imag_sum are computed and are delayed due to the latency in the adders
which depends both on the add_latency and the number of inputs.

FIR Double Column

Block: FIR Double Column (fir_dbl_col)
Block Author: Aaron Parsons
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Takes in real and imaginary numbers to be multiplied by the coefficients and then the filter sums the real and imaginary
parts separately. Then both sums are output as well as a delayed version of the unchanged inputs.

Mask Parameters

Parameter Variable Description
Inputs n_inputs The number of real inputs and the number of imaginary inputs.
Coefficients coeff A vector of coefficients of this FIR. Should be the same number of coefficients as

inputs.
Add La-
tency

add_latency The latency of the internal adders.

Mult La-
tency

mult_latency The latency of the internal multipliers.

4.2. Documentation 65

CASPER Toolflow, Release 0.1

Ports

Port Dir Data
Type

Description

real IN Inher-
ited

This real input is to be multiplied by one of the coefficients.

imag IN Inher-
ited

This imaginary input is to be multiplied by one of the coefficients.

real_back IN Inher-
ited

These real inputs correspond to the second half of the input stream. They get added to
one of the real inputs before being multiplied by the coefficient.

imag_back IN Inher-
ited

These imaginary inputs correspond to the second half of the input stream. They get
added to one of the imag inputs before being multiplied by the coefficient.

real_out OUT Inher-
ited

This output is real delayed by 1 cycle.

imag_out OUT Inher-
ited

This output is imag delayed by 1 cycle.

real_back_outOUT Inher-
ited

This output is real_back delayed by 1 cycle.

imag_back_outOUT Inher-
ited

This output is imag_back delayed by 1 cycle.

real_sum OUT Inher-
ited

This is the sum of all the multiplications between real and real_back and their
corresponding coefficients.

imag_sum OUT Inher-
ited

This is the sum of all the multiplications between imag and imag_back and their
corresponding coefficients.

Description

Usage

This block takes in a number of inputs in parallel and outputs a delayed version of them and also multiplies the inputs
by the coefficients. Then real_sum and imag_sum are computed and are delayed due to the latency in the adders
which depends both on the add_latency and the number of inputs. For example, if you choose the number of
inputs to be 2, then there will be 2 real and 2 real_back input ports along with 2 imag and 2 imag_back input
ports. The FIR Double Column blocks takes advantage of the symmetric filter tap coefficients by adding the first and
last inputs together before multiplying by the coefficient. This results in a more efficient FIR filter column.

FIR Tap

Block: FIR Tap (fir_tap)
Block Author: Aaron Parsons
Document Author: Ben Blackman

66 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

This block multiplies both inputs by factor and outputs the result immediately after the multiply and outputs a
delayed copy of the input by 1 cycle,

Mask Parameters

Parameter Variable Description
Factor factor The value that multiplies both inputs.
Mult latency latency The latency of the multiplier.

Ports

Port Dir Data
Type

Description

a IN Inherited The first number to be multiplied by factor. It usually is the real component of an
input.

b IN Inherited The second number to be multiplied by factor. It usually is the imaginary compo-
nent of an input.

a_out OUT Inherited The input a delayed by 1 cycle.
b_out OUT Inherited The input b delayed by 1 cycle.
real OUT Inherited The result of the multiplication of a with factor.
imag OUT Inherited The result of the multiplication of b with factor.

Description

Usage

a_out and b_out are 1 cycle delayed versions of a and b, respectively. real and imag are the results of a *
factor and b * factor, respectively. The delay from a to real or b to imag is equal to latency.

Freeze Counter Block

Block: Freeze Counter Block (freeze_cntr)
Block Author: Aaron Parsons

4.2. Documentation 67

CASPER Toolflow, Release 0.1

Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

A freeze counter is an enabled counter which holds its final value (regardless of enables) until it is reset.

Mask Parameters

Parameter Variable Description
Counter Length (2?) CounterBits Specifies the number of bits (and the final count output of 2bits 1).

Ports

Port Dir Data Type Description
en in ??? Step the counter by 1 unless addr=2bits 1.
rst in ??? Reset counter to 0.
addr out ??? Current output of the counter.
we out Boolean Outputs boolean true just before addr is incremented.
done out Boolean Outputs boolean true when a final en is asserted and addr=2bits 1.

Description

A freeze counter is an enabled counter which holds its final value (regardless of enables) until it is reset. Thus, a 25

freeze counter will count from 0 to 31 on 31 enables, but will hold 31 thereafter until a reset occurs. This block is
useful for writing data in a single pass to memory without looping.

Local Oscillator Constant

Block: Local Oscillator Constant (lo_const)
Block Author: Aaron Parsons
Document Author: Ben Blackman

68 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Gives the sine and cosine of a desired constant phase.

Mask Parameters

Parameter Variable Description
Output Bitwidth n_bits Bitwidth of the outputs.
Phase (0 to 2*pi) phase The phase value for which the sine and cosine are evaluated.

Ports

Port Dir Data Type Description
sin OUT Fix_(n_bits)_(n_bits-1) The sine of the given phase value.
cos OUT Fix_(n_bits)_(n_bits-1) The cosine of the given phase value.

Description

Usage

This block gives the sine and cosine of a user-specified, constant phase value with a user-specified bitwidth.

Local Oscillator

Block: Local Oscillator (lo_osc)
Block Author: Aaron Parsons
Document Author: Ben Blackman

4.2. Documentation 69

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Generates an oscillating sine and cosine.

Mask Parameters

Parameter Variable Description
Output Bitwidth n_bits Bitwidth of the outputs.
Counter Step counter_step Step size of the internal counter.
Counter Start Value counter_start Initial value of the internal counter.
Counter Bitwidth counter_width Bitwidth of the internal counter.
Latency latency The latency of the block.

Ports

Port Dir Data Type Description
sin OUT Fix_(n_bits)_(n_bits-1) Sine of the current phase, which is given by the counter.
cos OUT Fix_(n_bits)_(n_bits-1) Cosine of the current phase, which is given by the counter.

Description

Usage

This block generates the sine and cosine of an oscillator with user-defined spacing (based on counter_step and
counter_width) and bitwidth.

Mixer

Block: Mixer (mixer)
Block Author: Aaron Parsons
Document Author: Aaron Parsons, Ben Blackman

70 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Digitally mixes an input signal (which can be several samples in parallel) with an LO of the indicated frequency (which
is some fraction of the native FPGA clock rate).

Mask Parameters

Parameter Variable Description
Frequency Divisions freq_div The (power of 2) denominator of the mixing frequency.
Mixing Frequency freq The numerator of the mixing frequency.
Number of Parallel Streams nstreams The number of samples that arrive in parallel.
Bit Width n_bits The bitwidth of LO samples.
BRAM Latency bram_latency The latency of sin/cos lookup table.
MULT Latency mult_latency The latency of mixing multipliers.

Ports

Port Dir Data Type Description
sync IN boolean Takes in an impulse the cycle before the dins are valid.
dinX IN Fix_8_7 Input X to be mixed and output on realX and imagX.
sync_out OUT boolean This signal will be high the cycle before the data coming out is valid.
realX OUT Fix_(n_bits)_(n_bits-

1)
Real output of mixed dinX.

imagX OUT Fix_(n_bits)_(n_bits-
1)

Imaginary output of mixed dinX.

Description

Usage

Mixer mixes the incoming data and produces both real and imaginary outputs.

M = Frequency Divisions
F = Mixing Frequency

4.2. Documentation 71

CASPER Toolflow, Release 0.1

M and F must both be integers, and M must be a power of 2. The ratio F/M should equal the ratio f/r where r is the data
rate of the sampled signal. For example, an F/M of 3/16 would downmix an 800Msps signal with an LO of 150MHz.

Negative Edge Detect

Block: Negative Edge Detect Block (negedge)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Outputs true if a boolean input signal is currently false, but was true during the last clock.

Mask Parameters

None.

Ports

Port Dir Data Type Description
in in Boolean Input boolean signal.
out out Boolean Negative-edge detected output boolean signal.

Description

Outputs true if a boolean input signal is currently false, but was true during the last clock.

Partial Delay

Block: Partial Delay Block (partial_delay)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

72 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

For a set of parallel inputs which represent consecutive time samples of the same input signal, this block delays the
stream by a dynamically selectable number of samples between 0 and (n_inputs-1).

Mask Parameters

Parameter Variable Description
No. of inputs. n_inputs The number of parallel inputs.
Mux Latency latency The latency of each mux block.

Ports

Port Dir Data Type Description
sync ??? ??? Indicates the next clock cycle containing valid data
din in ??? A number to be summed.

Description

Ex.: Mapping of 4 parallel input samples to output for delay = 2.

. . . 4 0 . . . 6 2

. . . 5 1 . . . 7 3

. . . 6 2 4 0 . . .

. . . 7 3 5 1 . . .

Polyphase Real FIR Filter

Block: Polyphase Real FIR Filter (pfb_fir_real)
Block Author: Henry Chen
Document Author: Ben Blackman

4.2. Documentation 73

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

This block, combined with an FFT, implements a real Polyphase Filter Bank which uses longer windows of data to
improve the shape of channels within a spectrum.

Mask Parameters

Parameter Vari-
able

Description

Size of PFB (2?

pnts)
PFB-
Size

The number of channels in the PFB (this should also be the size of the FFT which
follows).

Total Number of
Taps

Total-
Taps

The number of taps in the PFB FIR filter. Each tap uses 2 real multiplier cores and
requires buffering the real and imaginary streams for 2*PFBSize* samples.

Windowing
Function

Win-
dow-
Type

Which windowing function to use (this allows trading passband ripple for steepness
of rolloff, etc).

Number of
Simultaneous
Inputs (2?)

n_inputs The number of parallel time samples which are presented to the FFT core each
clock. The number of output ports are set to this same value.

Make Biplex Make-
Biplex

Double up the inputs to match with a biplex FFT.

Input Bitwidth BitWidthInThe number of bits in each real and imaginary sample input to the PFB.
Output Bitwidth BitWidthOutThe number of bits in each real and imaginary sample output from the PFB. This

should match the bit width in the FFT that follows.
Coefficient
Bitwidth

Coeff-
BitWidth

The number of bits in each coefficient. This is usually chosen to match the input bit
width.

Use Distributed
Memory for
Coeffs

Co-
effDist-
Mem

Store the FIR coefficients in distributed memory (if = 1). Otherwise, BRAMs are
used to hold the coefficients.

Add Latency add_latencyLatency through adders in the FFT.
Mult Latency mult_latencyLatency through multipliers in the FFT.
BRAM Latency bram_latencyLatency through BRAM in the FFT.
Quantization Be-
havior

quanti-
zation

Specifies the rounding behavior used at the end of each butterfly computation to
return to the number of bits specified above.

Bin Width Scal-
ing (normal=1)

fwidth PFBs give enhanced control over the width of frequency channels. By adjusting this
parameter, you can scale bins to be wider (for values > 1) or narrower (for values <
1).

74 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
sync IN Boolean Indicates the next clock cycle contains valid data
pol_in IN Inherited The (real) time-domain stream(s).
sync_out OUT Boolean Indicates that data out will be valid next clock cycle.
pol_out OUT Inherited The (real) PFB FIR output, which is still a time-domain signal.

Description

Usage

This block, combined with an FFT, implements a real Polyphase Filter Bank which uses longer windows of data to
improve the shape of channels within a spectrum.

Polyphase FIR Filter

Block: Polyphase FIR Filter (frontend for a full PFB) (pfb_fir)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

This block, combined with an FFT, implements a Polyphase Filter Bank which uses longer windows of data to improve
the shape of channels within a spectrum.

4.2. Documentation 75

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description

Size of PFB: (2?) PFB-
Size

The number of channels in the PFB (this should also be the size of the FFT which
follows).

Total Number of
Taps:

Total-
Taps

The number of taps in the PFB FIR filter. Each tap uses 2 real multiplier cores
and requires buffering the real and imaginary streams for 2PFBSize samples.

Windowing Func-
tion

Win-
dow-
Type

Which windowing function to use (this allows trading passband ripple for steep-
ness of rolloff, etc).

Number of Simul-
taneous Inputs: (2?)

n_inputs The number of parallel time samples which are presented to the FFT core each
clock. The number of output ports are set to this same value.

Make Biplex Make-
Biplex

Double up the inputs to match with a biplex FFT.

Input Bit Width BitWidthInThe number of bits in each real and imaginary sample input to the PFB.
Output Bit Width BitWidthOutThe number of bits in each real and imaginary sample output from the PFB. This

should match the bit width in the FFT that follows.
Coefficient Bit
Width

Coeff-
BitWidth

The number of bits in each coefficient. This is usually chosen to match the input
bit width.

Use Distributed
Memory for Coef-
ficients

Co-
effDist-
Mem

Store the FIR coefficients in distributed memory (if = 1). Otherwise, BRAMs are
used to hold the coefficients.

Add Latency add_latencyLatency through adders in the FFT.
Mult Latency mult_latencyLatency through multipliers in the FFT.
BRAM Latency bram_latencyLatency through BRAM in the FFT.
Quantization
Behavior

quanti-
zation

Specifies the rounding behavior used at the end of each butterfly computation to
return to the number of bits specified above.

Bin Width Scaling
(normal = 1)

fwidth PFBs give enhanced control over the width of frequency channels. By adjusting
this parameter, you can scale bins to be wider (for values > 1) or narrower (for
values < 1).

Ports

Port Dir Data Type Description
sync in Boolean Indicates the next clock cycle contains valid data
pol_in in Inherited The (complex) time-domain stream(s).
sync_out out Boolean Indicates that data out will be valid next clock cycle.
pol_out out Inherited The (complex) PFB FIR output, which is still a time-domain signal.

Description

This block, combined with an FFT, implements a Polyphase Filter Bank which uses longer windows of data to improve
the shape of channels within a spectrum.

Positive Edge Detect

Block: Positive Edge Detect Block (posedge)

76 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Outputs true if a boolean input signal is true this clock and was false during the last clock.

Mask Parameters

None.

Ports

Port Dir Data Type Description
in in Boolean Input boolean signal.
out out Boolean Positive-edge detected output boolean signal.

Description

Outputs true if a boolean input signal is true this clock and was false during the last clock.

Power

Block: Power (power)
Block Author: Aaron Parsons
Document Author: Ben Blackman

4.2. Documentation 77

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Computes the power of a complex number.

Mask Parameters

Parameter Variable Description
Bit Width BitWidth The number of bits in its input.

Ports

Port Dir Data Type Description
c IN 2*BitWidth Fixed point A complex number whose higher BitWidth bits are its real part and lower

BitWidth bits are its imaginary part.
power OUT UFix_(2*BitWidth)_(2*BitWidth-

1)
The computed power of the input complex number.

Description

Usage

The power block typically has a latency of 5 and will compute the power of its input by taking the sum of the squares
of its real and imaginary components.

Pulse Extender

Block: Pulse Extender Block (pulse_ext)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

78 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Extends a boolean signal to be high for the specified number of clocks after the last high input.

Mask Parameters

Parameter Variable Description
Length of Pulse pulse_len Specifies number of clocks after the last high input for which the output is held high.

Ports

Port Dir Data Type Description
in in Boolean Input boolean signal.
out out Boolean Pulse-extended boolean signal.

Description

Extends a boolean signal to be high for the specified number of clocks after the last high input. If a new in pulse (input
high) occurs, the counter determining the output pulse length is reset.

RC Multiplier

Block: RC Multiplier (rcmult)
Block Author: Aaron Parsons
Document Author: Ben Blackman

4.2. Documentation 79

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

Takes an input and sine and cosine value and gives out both real and imaginary outputs.

Mask Parameters

Parameter Variable Description
Latency latency The latency of the multipliers and of the rcmult block.

Ports

Port Dir Data Type Description
d IN Inherited The input to be multiplied by sine and cosine values.
sin IN Inherited The sine value used to multiply d and generate the imag output.
cos IN Inherited The cosine value used to multiply d and generate the real output.
real OUT Inherited The result of multiplying d with cos.
imag OUT Inherited The result of multiplying d with sin.

Description

Usage

This rcmult block takes an input value, d, and computes the real and imaginary components by multiplying by the
cos and sin, respectively. The block has a delay of latency associated with it.

Reorder

Block: Reorder (reorder)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

80 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Permutes a vector of samples to into the desired order.

Mask Parameters

Pa-
ram-
eter

Vari-
able

Description

Out-
put
Or-
der

map Assuming an input order of 0, 1, 2, . . . , this is a vector of the desired output order (e.g. [0 1 2 3]).

No.
of
in-
puts.

n_inputsThe number of parallel streams to which this reorder should be applied.

BRAM
La-
tency

bram_latencyThe latency of the BRAM buffer.

Map
La-
tency

map_latencyThe latency allowed for the combinatorial logic required for mapping a counter to the desired out-
put order. If your permutation can be acheived by simply reordering bits (as is the case for bit
reversed order, reverse order, and matrix tranposes with power-of-2 dimensions), a map latency of 0
is appropriate. Otherwise, 1 or 2 is a good idea.

Dou-
ble
Buffer

dou-
ble_buffer

By default, this block uses single buffering (meaning it uses a buffer only the size of the vector, and
permutes the data order in place). You can override this by setting this parameter to 1, in which case
2 buffers are used to permute the vector (saving logic resources at the expense of BRAM).

Ports

Port Dir Data Type Description
sync in Boolean Indicates the next clock cycle contains valid data
en in Boolean Indicates the current input data is valid.
din in Inherited The data stream(s) to be permuted.
sync_out out Boolean Indicates that data out will be valid next clock cycle.
valid out Boolean Indicates the current output data is valid.
dout out Inherited The permuted data stream(s).

4.2. Documentation 81

CASPER Toolflow, Release 0.1

Description

Permutes a vector of samples into the desired order. By default, this block uses a single buffer to do this. As vectors
are permuted, the data placement in memory will go through several orders before it repeats. For large orders (>
16) you should consider using double buffering, but otherwise, this block saves BRAM resources with only a modest
increase in logic resources.

Real-Imag to Complex

Block: Real-Imag to Complex Block (ri_to_c)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Concatenates real and imaginary inputs into a complex output. Useful for simplifying interconnects. See also c_to_ri.

Mask Parameters

None.

Ports

Port Dir Data Type Description
r in Fix_x_y Real data
i in Fix_x_y Imaginary signed output, binary point specified by parameter.
c out UFix_x_0 Complex input, real in MSB, imaginary in LSB.

Description

Conveniently combines real and imaginary components of a number into a single wire. See also c_to_ri.

82 Chapter 4. mlib_devel directory structure

C_to_ri.html
C_to_ri.html

CASPER Toolflow, Release 0.1

Square Transposer

Block: Square Transposer (square_transposer)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Presents a number of parallel inputs serially on the same number of output lines.

Mask Parameters

Parameter Variable Description
Number of inputs n_inputs The number of parallel inputs (and outputs).

Ports

Port Dir Data Type Description
sync in Boolean Indicates the next clock cycle contains valid data
In in Inherited The stream(s) to be transposed.
sync_out out Boolean Indicates that data out will be valid next clock cycle.
Out out Inherited The transposed stream(s).

Description

(Out1, Out2, etc.) appear aligned:

In1 d12 d8 d4 d0 d3 d2 d1 d0 Out1
In2 d13 d9 d5 d1 d7 d6 d5 d4 Out2
In3 d14 d10 d6 d2 d11 d10 d9 d8 Out3
In4 d15 d11 d7 d3 d15 d14 d13 d12 Out4

4.2. Documentation 83

CASPER Toolflow, Release 0.1

Stopwatch

Block: Stopwatch (stopwatch)
Block Author: Jason Manley
Document Author: Jason Manley

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Counts the number of clocks between a start and stop pulse.

Mask Parameters

None.

Ports

Port Dir Data Type Description
start in boolean Start counting
stop in boolean Stop counting and hold value until reset received
reset in boolean Reset back to zero.
count_out out ufix_32_0 Number of clocks elapsed since start pulse received.

Description

This block counts the number of clocks between a start and stop pulse. This value is held until a reset is received. If
another start pulse is received before the reset, counting resumes from where it left-off. If a reset is received mid-way
through a count (ie before a stop pulse) then the stopwatch will be reset and await another start pulse before it restarts
counting.

Enabled Sync Delay

Block: Enabled Sync Delay (sync_delay_en)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

84 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Delay an infrequent boolean pulse by the specified number of enabled clocks.

Mask Parameters

Parameter Variable Description
Delay Length DelayLen The length of the delay.

Ports

Port Dir Data Type Description
in in boolean The boolean signal to be delayed.
en in boolean To be asserted when input is valid.
out out boolean The delayed boolean signal, output 1 clock after en.

Description

Delay an infrequent boolean pulse by the specified number of enabled clocks. If the input pulse repeats before the
output pulse is generated, an internal counter resets and that output pulse is never generated.

Programmable Sync Delay

Block: Programmable Sync Delay (sync_delay_prog)
Block Author: Aaron Parsons
Document Author: Aaron Parsons

4.2. Documentation 85

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Delay an infrequent boolean pulse by a run-time programmable number of enabled clocks. If the input pulse repeats
before the output pulse is generated, an internal counter resets and that output pulse is never generated. When delay is
changed, some randomly determined samples will be inserted/dropped from the buffered stream.

Mask Parameters

Parameter Variable Description
Max Delay (2?) MaxDelay The maximum length of the delay.

Ports

Port Dir Data Type Description
sync in ??? The boolean signal to be delayed.
delay in ??? The run-time programmable delay length.
sync_out out ??? The delayed boolean signal.

Description

Delay an infrequent boolean pulse by a run-time programmable number of enabled clocks. If the input pulse repeats
before the output pulse is generated, an internal counter resets and that output pulse is never generated. When delay is
changed, some randomly determined samples will be inserted/dropped from the buffered stream.

Sync Pulse Generator

Block: Sync Pulse Generator (sync_gen)
Block Author: Mark Wagner, Suraj Gowda
Document Author: Suraj Gowda, Billy Mallard

86 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Generates a sync pulse of an appropriate period for a design.

Mask Parameters

Parameter Vari-
able

Description

Simulation
Accumulation
Length

gen_acc_lenThe accumulation length that will be used for generation.

FFT Size fft_size The size of the FFT.
Simultaneous
Inputs (FFT)

fft_simult_inputsThe number of data inputs into the FFT.

Taps in pfb_fir pfb_fir_tapsThe number of PFB filter taps. If your design does not use a pfb_fir, set this to 1.
Reorder Or-
ders

re-
order_vec

A vector of the orders of the reorder blocks inside the FFT. In your model, the reorder
blocks are in fft/fft_biplex/biplex_cplx_unscrambler. The orders should be displayed
under the blocks.

Scale scale The amount to scale the sync period by.

Ports

Port Dir Data Type Description
sync_out out Boolean The generated sync pulse.

Description

The sync_gen block computes the sync pulse period as:

This formula is derived in Memo #25.

Windowed X-Engine

Block: Windowed X-Engine (win_x_engine)

4.2. Documentation 87

http://casper.berkeley.edu/memos/sync_memo_v1.pdf

CASPER Toolflow, Release 0.1

Block Author: Jason Manley, Aaron Parsons, Terry Filiba
Document Author: Jason Manley

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Introduction
– Input format
– Output Format

Summary

CASPER X engine with added internal valid data masking functionality. Based on Aaron Parsons’ design.

Mask Parameters

Parameter Variable Description
Number of antennas n_ants Number of antennas to process.
Bit width of sam-
ples in

n_bits Bit width of each input sample number. Usually set to 4, resulting in 16 bit
input numbers (2 polarizations, complex numbers).

Accumulation
length

acc_len Specified per antenna.

Adder latency add_latency Used to set the latency of internal adders.
Multiplier latency mult_latencyUsed to set the latency of internal multipliers.
BRAM latency bram_latencyUsed to set the latency of internal BRAMs.
Implementation:
Multiplier type

use_ded_multSelect the type of multipliers to use. Can be a single number or array - see
below.

Implementation:
Delay type

use_bram_delaySelects the type of delays to implement. Single number configures all internal
taps.

88 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
ant in variable width. see

below.
Input port for incoming antenna data.

sync_in in boolean Synchronization pulse. New window begins clock cycle after sync
received.

win-
dow_valid

in boolean Indicates incoming antenna data is valid. Must remain constant for
acc_len*n_ants.

acc out variable width. see
below.

Output data.

valid out boolean Indicates data on acc is valid.
sync_out out boolean Passthrough for sync pulses.

Description

Introduction

The CASPER X engine is a streaming architecture block where complex antenna data is input and accumulated
products (for all cross-multiplications) are output in conjugated form. Because it is streaming with valid data expected
on every clock cycle, data is logically divided into windows. These windows can either be valid (in which case the
computation yields valid, outputted results) or invalid (in which case computation still occurs, but the results are
ignored and not presented to the user).

Input format

Data is input serially: antenna A, antenna B, antenna C etc. Each antenna’s data consists of dual polar-
ization, complex data. The bit width of each component number can be set as a parameter, n_bits. The X-engine
thus expects these four numbers of n_bits to be concatenated into a single, unsigned number. CASPER convention
dictates that complex numbers are represented with higher bits as real and lower bits as imaginary. The top half of the
input number is polarization one and the lower half polarization two.

The internals of the block are reset with the reception of a sync pulse. A new window begins on the very next clock
cycle. Each window is int_len * n_ants clock cycles long. The data for each antenna is input for acc_len
clock cycles.

For example, for n_bits of 4 and acc_len of 2, the input to the X-engine would be 16 bits every clock cycle
mapped as follows:

. . . t4 t3 t2 t1 t0

. . . C1real B1real B1real A1real A1real most_sig 4b

. . . C1imag B1imag B1imag A1imag A1imag 4b

. . . C2real B2real B2real A2real A2real 4b

. . . C2imag B2imag B2imag A2imag A2imag least_sig 4b

X-engine input with acc_len of 2.

The window_valid line is expected to remain constant for the duration of each window. If it is high, the output is
considered valid and captured into the output FIFO buffer. With the close of that window, the output will be presented
to the user as valid data on every second clock pulse. If window_valid was held low, the data is ignored.

4.2. Documentation 89

CASPER Toolflow, Release 0.1

With the close of one window, anther begins directly afterwards. Data can thus be streamed in and out continuously,
while a sync pulse will force the start of a new window.

Output Format

The windowed X-engine will produce valid out-

puts. The unwindowed x engine produces
results. The extra valids are a result of the algorithm employed and are masked out by the internal x_engine_mask.

Generally, the output of the X-engine configured for N antennas can be mapped into a table with
columns and N rows as follows:

1st 0 0 0 N 0 (N-1) 0 (N-2) . . .
2nd 1 1 0 1 1 N 1 (N-1) . . .
3rd 2 2 1 2 0 2 2 N . . .
4th 3 3 2 3 1 3 0 3 . . .
5th 4 4 3 4 2 4 1 4 . . .
6th 5 5 4 5 3 5 2 5 . . .
.

Each table entry represents a valid output. Data is read out right to left, top to bottom. Bracketed values are from
previous window.

As an example, consider the output for a 4 antenna system (with antennas numbered A through D):

1st AA prev win DA prev win CA
2nd BB AB prev win BD
3rd CC BC AC
4th next win AA CD BD
5th next win BB next win AB DB

Boldfaced type represents current valid window of data. Data is read out right to left, top to bottom. Non-boldfaced
data is masked.

Thanks to the inclusion of the x_engine_mask block, X-engine output duplicates (observed in rows 5 and 6 above)
are automatically removed. The output of a 4 antenna windowed X-engine is thus AA, AB, BB, AC, BC, CC,
BD, CD, DD, DA.

X-Engine TVG

Block: X-Engine TVG (xeng_tvg)
Block Author: Jason Manley
Document Author: Jason Manley

90 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Basic test vector generator for CASPER X-engines.

Mask Parameters

Parameter Variable Description
Number of Antennas (2n) ant_bits Bitwidth of the number of antennas in the system.
Bitwidth of Samples in bits_in Bitwidth of component of the input.
X integration length (2n) x_int_bits Bitwidth of X-engine accumulation length.
Sync Pulse Period (2n) sync_period Bitwidth of number of valids between sync pulses.

Ports

Port Dir Data Type Description
tvg_sel in ufix_2_0 TVG selection. 0=off (passthrough), 1-3=TVG select.
data_in in inherited: bits_in*4 Data in for passthrough.
valid_in in boolean Valid in made available for passthrough.
sync_in in boolean Sync in made available for passthrough.
data_out out inherited: bits_in*4 ???
sync_out out boolean ???
valid_out out boolean ???

Description

This block generates data in a format suitable for input to a CASPER X-engine. The tvg_sel line selects the TVG.
If set to zero, it is configured for passthrough and all input signals are propagated to the output (TVG is off). Values
one through three select a TVG pattern. In this case, sync pulses are generated internally and valid data is output all
the time. The three patterns are as follows:

1. Inserts a counter representing the antenna number. All real values count up from zero and imaginary values
counting down from zero. ie., antenna four would have the value 4 4i inserted.

2. Inserts the same constant for all antennas: Pol1real = 0.125, Pol1imag = 0.75, Pol2real = 0.5 and Pol2imag = 0.25

3. User selectable values for each antenna. Input registers named tv0 through tv7 are input cyclically. Each
value is input for x_int_bits clocks.

4.2. Documentation 91

CASPER Toolflow, Release 0.1

Communication Blocks

ten_gbe (10GbE Transceiver)

XAUI (XAUI Transceiver)

10 GbE Transceiver

Block: 10GbE Transceiver (ten_gbe)
Block Author: David George
Document Author: David George

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Configuration
– Transmitting
– Receiving
– Addressing
– LED Outputs
– Operation

Summary

This block sends and receives UDP frames (packets). It accepts a 64 bit wide data stream with user-determined frame
breaks. The data stream is wrapped in a UDP frame for transmission. Incoming UDP packets are unwrapped and the
data presented as a 64 bit wide stream.

92 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parame-
ter

Vari-
able

Description

Port port Selects the physical CX4 port.
Shallow
RX Fifo

rx_dist_ramSelects shallow distributed RAM rather than BRAM for the RX FIFO. This option should
only be used if the application clock is faster than 156.25 MHz. Constant overruns will most
likely occur for clock frequency lower than this.

Pre-
emphasis

pre_emphSelects the default pre-emaphasis to use over the physical link. Currently unused.

Differ-
ential
Swing

swing Selects the size of the differential swing to use in mV. Currently unused.

Enable
Fabric on
Startup

fab_en This will enable the 10Ge interface on start-up, negating the requirement of software inter-
vention.

Fabric
MAC
Addresss

fab_macSets the default MAC, usually configured by software.

Fabric IP
Addresss

fab_ip Sets the default IP, usually configured by software.

Fabric
UDP Port

fab_portSets the default UDP Port, usually configured by software.

Fabric
Gateway

fab_gateSets the default gateway address, usually configured by software.

Enable
CPU RX

cpu_rx_enOptionally disable the CPU receive interface to save 2 BRAMS, if that interface is not re-
quired.

Enable
CPU TX

cpu_tx_enOptionally disable the CPU trasmit interface to save 2 BRAMS, if that interface is not re-
quired.

4.2. Documentation 93

CASPER Toolflow, Release 0.1

Ports

Port Dir Data
Type

Description

rst in boolean Resets the transmit and receive memories when asserted
tx_data in UFix_64_0The data stream to be transmitted
tx_valid in boolean The core accepts the data on tx_data into the buffer while this line is high
tx_dest_ip in UFix_32_0Selects the IP address of the receiving device
tx_dest_portin UFix_16_0Selects the listening port of the receiving device (UDP port)
tx_end_of_framein boolean Signals the transceiver to begin transmitting the buffered frame (ie signals end of the

frame). This signal must pulse high on the same clock cycle as the final tx_valid signal
rx_ack in boolean Used to acknowledge reception of the data currently on rx_data and signals the

transceiver to produce the next 64 bits from the receiver FIFO.
rx_overrun_ackin boolean Used to reset the RX state machine when a RX overrun occurs.
led_up out boolean Indicates a link on the port
led_rx out boolean Represents received traffic on the port
led_tx out boolean Represents transmitted traffic on the port
tx_afull out boolean Indicates that the TX FIFO is almost full
tx_overflowout boolean Indicates that the TX FIFO has overflowed
rx_data out UFix_64_0The received data stream.
rx_valid out boolean Indicates that the data on rx_data is valid (indicates a packet, or partial packet is in the

RX buffer).
rx_source_ipout UFix_32_0Represents the IP address of the sender of the current packet.
rx_source_portout UFix_16_0Represents the sender’s UDP port of the current packet.
rx_end_of_frameout boolean Goes high to indicate the end of the received frame.
rx_bad_frameout UFix_16_0Indicates a CRC error on the frame immediately received when asserted simultaneously

with rx_end_of_frame.
rx_overrun out UFix_16_0Indicates that an RX buffer overrun when asserted simultaneously with

rx_end_of_frame.

Description

This document is a draft and requires verification.

Configuration

This core will typically be configured by software by setting the following OPB registers: MAC, IP, UDP port, ARP
table, gateway and fabric enable. However, there are currently parameters to set these values (except for the ARP
table) at build time.

Transmitting

To transmit, data is clocked into the TX buffer through tx_data in 64 bit wide words using tx_valid. When
sending the final word of data in the packet, simultaneously pulse the tx_end_of_frame line; the transceiver will
add a UDP wrapper addressed to tx_dest_ip:tx_dest_port and begin transmission immediately. Note that
tx_dest_ip and tx_dest_port are only looked at when tx_end_of_frame is pulsed high, thus the value must be valid for
that clock period but is irrelevant otherwise.

The transmit FIFO can only handle frame sizes of up to 8704 bytes, or 1088 64 bit words. As the TX FIFO approaches
full, the tx_afull signal will be asserted. This is an indication that the application should stop entering data into

94 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

the core. If the application overflows the TX buffer, the tx_overflow signal will be asserted. When the overflow is
asserted the TX interface will block, requiring a reset (using rst) to return to full functionality.

Receiving

Upon receipt of a packet, rx_validwill go high, with the received data presented on rx_data in 64 bit wide words.
You acknowledge receipt of this data using rx_ack, at which point the next data word will be presented. When the
end of the packet is reached, rx_end_of_frame will go high. If the a CRC error occurred when receiving the
packet, the rx_bad_frame signal will be asserted.

If the RX data overran the RX FIFO, the rx_overrun signal will be asserted along with rx_end_of_frame.
When this occurs the RX state machine will block until the rx_overrun_ack is asserted. It is recommended that
the rx_overrun be directly connected to the rx_overrun_ack signal.

There is no hard maximum frame size for RX. However, care must be taken not to overrun the rx buffer.

Addressing

To transmit, the IPv4 address is represented as a 32 bit binary number (whereas it’s usually represented as four 8 bit
decimal numbers). For example, if you wanted to send all packets to 192.168.1.1, you would enter

as the IP address. The port is represented by a 16 bit number, allowing full addressing of the UDP port range. Ports
below 1024 are generally reserved for Linux kernel and Internet functions. Ports 1024 - 49151 are registered for
specific applications and may not be used without IANA registration. To ensure inter-operability and compatibility,
we recommend using dynamic (private) ports 49152 through 65535.

LED Outputs

The LED lines indicate port activity and can be connected to external GPIO LED interfaces. Bear in mind that even if
no packets are being transmitted or received through the Simulink interface block, miscellaneous configuration packets
are still sent and may be received by the microprocessor core. This activity will also be reflected on the activity LEDs.

Operation

Apart from configuring the block, the processor is also used to map the routing tables. ARP requests and responses
are handled by the CPU.

XAUI

Block: XAUI Transceiver (XAUI)
Block Author: Pierre Yves Droz, Henry Chen
Document Author: Jason Manley

4.2. Documentation 95

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Demux
– Out of band signals

Summary

XAUI block for sending and receiving point-to-point, streaming data over the BEE2 and iBOB’s CX4 connectors.
NOTE: A new version of this block is in development.

Mask Parameters

Param-
eter

Vari-
able

Description

Demux de-
mux

Selects the width of the data bus. 1 for 64 bits, 2 for 32 bits.

Port port Selects the physical CX4 port on the iBOB or BEE2. The iBOB has two ports; the BEE2
has two for the control FPGA and four for each of the user FPGAs. CORR is not used by
CASPER.

Pre-
emphasis

pre_emphSelects the pre-emaphasis to use over the physical link. Default: 3 (see Xilinx documentation)

Differ-
ential
Swing

swing Selects the size of the differential swing to use in mV. Default: 800 (see Xilinx documentation)

96 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
rx_get in boolean Used to request the next data word from the RX buffer.
rx_reset in boolean Resets the receive subsystem.
tx_data in ufix_64_0 or

ufix_32_0
Accepts the next data word (64 or 32 bits) to be transmitted.

tx_outofbandin ufix_8_0 or
ufix_4_0

Accepts the next data word (8 bits if demux=1, 4 bits if demux=2) to be
transmitted through the out-of-band channel.

tx_valid out boolean Clocks the transmit data into the transceiver. Data is clocked into the buffer
while this line is high.

rx_data out ufix_64_0 Outputs the received data stream.
rx_outofbandout ufix_8_0 or

ufix_4_0
Outputs the out-of-band received data stream.

rx_empty out boolean Indicates that the receive buffer is empty.
rx_valid out boolean Indicates that data has been received.
rx_linkdownout boolean Indicates that the link is down (eg. faulty cable).
tx_full out boolean Indicates the transmit buffer is full.
rx_almost_fullbooleaninherited Indicates the receive buffer is full.

Description

Demux

Perhaps a misnomer, this parameter describes the width of the data bus rather than a selection of two muxed streams
on one channel. At 156MHz XAUI clock, the maximum transmission speed is 64bits * 156.25 MHz = 10Gbit/s. For
BEE or iBOB designs clocked at rates above 156MHz, clocking-in 64 bit data on every clock cycle would cause the
XAUI block’s FIFO buffers to overflow. The demux option is provided which halves the input data bus width to 32
bits and enables data to be clocked-in on every FPGA clock cycle. Along with the data bus width, the out of band
bus width is also halved to 4 bits.

Out of band signals

Out of band signals are guaranteed to arrive at the same time as the data word with which they were sent. Out-of-band
data is only transmitted across the physical link if the input to tx_outofband changes and is clocked in as valid
(tx_valid). In other words, if you keep tx_outofband constant, no additional bandwidth is consumed (the in-
band signals are transmitted as normal). When data is clocked into the transmitter, it will appear out the receiver as if
the tx_outofband and tx_data arrived simultaneously. Care should be taken to ensure that the data clocked into
tx_outofband and tx_data does not exceed the XAUI’s maximum transmission rate (approximately 10Gbps
for 156.25MHz clock). Each change of tx_outofband (be it one bit or eight bits) requires 64 bits (a full word) to
transmit. This bus width is 8 bits if demux is not selected (set to 1), and 4 bits if it is set to 2.

System Blocks

adc (ADC)

x64_adc (64 Channel, 12 bit ADC: 64ADCx64-12)

dac (DAC)

dram (DRAM)

4.2. Documentation 97

src/blockdocs/64ADCx64-12.html

CASPER Toolflow, Release 0.1

gpio_bidir (Bi-directional GPIO)

gpio (GPIO)

qdr (QDR)

snapshot (Snapshot Capture)

snap (Snapshot Capture)

snap64 (64-Bit Snapshot Capture)

software_register (Software Register)

sram (SRAM)

XSG core config (XSG Core Config)

Gaussian Random Number Generator (Gaussian Random Number Generator)

Correlation Control Block (CCB)

ADC

Block: ADC (adc)
Block Author: Pierre Yves Droz
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage
– Connecting the Hardware
– ADC Background Information

Summary

The ADC block converts analog inputs to digital outputs. Every clock cycle, the inputs are sampled and digitized to 8
bit binary point numbers in the range of [-1, 1) and are then output by the adc.

98 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Variable Description
ADC board adc_brd Select which ADC port to use on the IBOB.
ADC clock rate
(MHz)

adc_clk_rate Sets the clock rate of the ADC, must be at least 4x the IBOB clock rate.

ADC interleave
mode

adc_interleave Check for 1 input, uncheck for 2 inputs.

Sample period sam-
ple_period

Sets the period at which the adc outputs samples (ie 2 means every other
cycle).

Ports

Port Dir Data
Type

Description

sim_in IN dou-
ble

The analog signal to be digitized if interleave mode is selected. Note: For simulation only.

sim_i IN dou-
ble

The first analog signal to be digitized if interleave mode is unselected. Note: For simulation
only.

sim_q IN dou-
ble

The second analog signal to be digitized if interleave mode is unselected. Note: For simu-
lation only.

sim_syncIN dou-
ble

Takes a pulse to be observed at the output to measure the delay through the block. Note:
For simulation only.

sim_data_validIN dou-
ble

A signal that is high when inputs are valid. Note: For simulation only.

oX OUT Fix_8_7A signal that represents sample X+1 (Ex. o0 is the 1st sample, o7 is the 8th sample). Used
if interleave mode is on.

iX OUT Fix_8_7A signal that represents sample X+1 (Ex. i0 is the 1st sample, o3 is the 4th sample). Used
if interleave mode is off.

qX OUT Fix_8_7A signal that represents sample X+1 (Ex. q0 is the 1st sample, q3 is the 4th sample). Used
if interleave mode is off.

out-
ofrangeX

OUT booleanA signal that represents when samples are outside the valid range.

syncX OUT booleanA signal that is high when the sync pulse offset by X if interleave mode is unselected, or
2X if interleave mode is selected is high (Ex. sync2 is the pulse offset by 2 if interleave is
off or offset by 4 if interlave is on).

data_validOUT booleanA signal that is high when the outputs are valid.

Description

Usage

The ADC block can take 1 or 2 analog input streams. The first input should be connected to input i and the second
to input q if it is being used. The inputs will then be digitized to Fix_8_7 numbers between [-1, 1). For a single
input, the adc samples its input 8 times per IBOB clock cycle and outputs the 8 samples in parallel with o0 being the
first sample and o7 the last sample. For 2 inputs, the adc samples both inputs 4 times per IBOB clock cycle and then
outputs them in parallel with i0-i3 corresponding to input i and q0-q3 corresponding to input q. In addition to having
2 possible inputs, each IBOB can interface with 2 adcs for a total of 4 inputs or 2 8-sample inputs per IBOB.

4.2. Documentation 99

CASPER Toolflow, Release 0.1

Connecting the Hardware

To hook up the ADC board, attach the clock SMA cable to the clk_i port, the first input to the I+ port, and the second
input to the Q+ port. Check the hardware on the ADC board near the input pins. There should be for 4 square chips
in a straight line. If there are only 3, the second input, Q+, may not work. Note that if you chose adc0_clk, make
sure to plug the ADC board in to the adc0 port. The same applies if you chose adc1_clk to plug the board into adc1
port. If you are using both ADCs, then you need to plug a clock into both clk_i inputs and you should probably run
them off of the same signal generator.

ADC Background Information

The ADC board was designed to mate directly to an IBOB board through ZDOK connectors for high-speed serial data
I/O. Analog data is digitized using an Atmel AT84AD001B dual 8-bit ADC chip which can digitize two streams at 1
Gsample/sec or a single stream at 2 Gsample/sec. This board may be driven with either single-ended or differential
inputs.

X64 ADC

Block: x64_adc (x64_adc)
Block Author: Jack Hickish, David George
Document Author: Jack Hickish

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Background
– Connecting the ADC

* Clock Selection
* Reset signal
* SPI Interface

– Usage
* ADC Synchronization
* Data Output
* Data Input

Summary

The x64_ADC block converts 64 analog inputs to digital outputs. Every clock cycle, the inputs are sampled and
digitized to 12 bit binary point numbers in the range of [-1, 1).

100 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description

ADC clock
rate (MHz)

adc_clk_rateSets the rate of the ADC sampling clock. The ROACH clock is derived from the ADC
clock and should be 4x the clock rate entered here.

Include SPI
interface?

spi If checked, includes the ports and logic necessary to set the ADC control registers via
SPI.

GPIO bank ctrl_gpio The ADC SPI and reset interfaces are not routed through the ZDOK connector. This
parameter selects which of the ROACH GPIO banks to use to control them.

Ports

Port Dir Data
Type

Description

sim[0:15]IN dou-
ble

sim<n> should be connected to analogue channels 4n:4n+3 to be digitized. Note: For
simulation only.

sim_syncIN dou-
ble

Input should be high when channel 4n is present on input sim<n>. Note: For simulation
only.

adc_rst IN Bool Active high reset signal, used to reset FIFOs and adc chip.
sdata IN UFix_8_0Data to be written to the ADC registers over SPI. sdata[7:4] represents the register ad-

dress, sdata[3:0] represents the new value to be written. Present only when SPI interface is
enabled.

spi_strb IN Bool SPI write strobe. When a positive edge is detected on this port an SPI write is initiated
using the data and address presented on input sdata. Present only when SPI interface is
enabled.

dout[0:15]OUT Fix_12_11Four consecutive values of the signal represent a single time sample from four channels,
with dout<n> representing channels 4n:4n+3.

chan_syncOUT UFix_8_0A signal which goes high when a sample from channel 4n is present on output dout<n>.
The 8 bits of the signal are used to sync the 8 individual ADC chips on the ADC card.

Description

Background

The x64_adc block is an interface to the 64ADCx64-12 board developed by Rick Raffanti. The board is based around
8 Texas Instruments ADS5272 chips, each digitizing 8 signals at 12 bits resolution and up to 65MSa/s. The ADCs can
be clocked by an on-board 50MHz oscillator, or an external clock source.

Connecting the ADC

The 64ADCx64-12 is a twin Z-DOK card. Only one can be connected to a ROACH board.

Clock Selection

The x64_adc card includes an on-board 50MHz oscillator, but can also be driven by an external clock.

4.2. Documentation 101

64ADCx64-12.html
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=SBAS324&track=no
64ADCx64-12.html

CASPER Toolflow, Release 0.1

Header J4 controls selection of the ADC clock source. Leave J4 open to use the on-board 50MHz oscillator, or jumper
J4 to use an external clock applied across resistor R9 via pins 36 and 38 of header J13.

Reset signal

The reset pin is located on pin 4 of J13. This signal is active low, and should be held high for normal operation. The
yellow block interface is configured to drive the ADC reset pin via GPIO<A|B>_0, depending on the block parameter
specified by the user. Note that the reset on the yellow block interface is active HIGH. When the ADC is held in reset,
data output on the yellow block data lines will be the value -1 for all channels, in Fix_12_11 format.

SPI Interface

Various ADC features (including test patterns) can be activated by using a Serial Peripheral Interface to set the
registers as defined in the ADS5272 data sheet. Physical connections are as follows:
ADC pins

• SCLK: pin 36, J12

• SDATA: pin 38, J12

• nCS: (ADC chip n): pin (20 + 2n), J12

ROACH pins

• SCLK: GPIO<A|B>_2

• SDATA: GPIO<A|B>_1

• nCS: GPIO<A|B>_3

Where the GPIO port to use is determined by user-specified mask parameter. To write SPI registers, the “include
SPI interface” option should be activated in the x64_adc yellow block parameters. This should expose the input ports
“sdata” and “spi_strb” to the user. When a positive edge is detected on spi_strb, the data on sdata[3:0] is written to
address sdata[7:4]. Currently, due to limited ROACH GPIO and lack of requirement, only one nCS signal is used by
the yellow block. This can be connected to all ADC nCS pins, to write registers on all chips simultaneously.

Usage

The x64_adc block can take 64 analog input streams. The inputs are digitized to Fix_12_11 numbers between [-1,
1).

ADC Synchronization

The ADC card uses 8 separate chips, each providing its own clock over ZDOK to the FPGA. Rather than use all
8 clocks (some of which are not connected to clock enabled FPGA pins), a single clock is used, and the software
calibration script File:X64 adc cal.txt is run to ensure that data from all ADC chips is properly aligned.

Note: There may be a problem while running this script as is. In case there is a problem While
running the version available in the repository and throws the following error: unknown’x64_adc_ctrl’
variable, it can be fixed by adding the following line to the core_info.tab in the local repository
(mlib_devel/blob/master/xps_base/XPS_ROACH_base/core_info.tab)

1. IF# strcmp(get(b,’type’),’xps_x64_adc’)#x64_adc_ctrl 3 10000 100

102 Chapter 4. mlib_devel directory structure

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=SBAS324&track=no
../../_static/files/X64_ADC/X64_adc_cal.txt

CASPER Toolflow, Release 0.1

Also, the following line of calibration script which is no longer supported by the ‘corr’ package can be removed (it
seems this line was just meant for debugging).

fclk_sampled = self.bit_string((val0&0x0fff),12)

Data Output

The 64 channels digitized by the ADC are presented to the user as 16 data output signals. Each signal will cycle
through four multiplexed channels every four clock cycles. For example, in four consecutive clock cycles a sample
from channels 0,1,2,3 will appear on output “dout0”. In the following four clock cycles, the next time sample will
appear. Output dout<n> is responsible for samples from channels 4n, 4n+1, 4n+2 and 4n+3. Physically, ADC chip m
is responsible for channels 8m, 8m+1, . . . , 8m+7.
It is possible to identify the channels presented on each output by observing the chan_sync output, which is high
when sample 4n is present on output dout<n>. The 8 bits of chan_sync give the sync flag associated with each of the
8 ADC chips. Proper calibration should ensure that all chips are synchronized. In this case, the chan_sync output
should output zero, with the value 255 appearing once every four clocks.

Data Input

Data can be input for simulation using the sim<n> and sim_sync inputs. These inputs are passed straight to the dout<n>
and chan_sync outputs, and should be controlled accordingly, taking into account the data output details above.

64ADCx64-12

ADC64 Block Diagram

PXS Test Jig

PXSADC Top Level

PXS Spreadsheet

The 64 input 12 bit ADC board was developed by Rick Raffanti. the board has been tested at 65 Msps using Rick’s
verilog interface, but the simulink yellow block has only been tested at 50 Msps so far.

DAC

Block: DAC (dac)
Block Author: Henry Chen
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

4.2. Documentation 103

../../_static/files/X64_ADC/ADC64x12_PXSADC_PL_20080110.xls

CASPER Toolflow, Release 0.1

Summary

The DAC block converts 4 digital inputs to 1 analog output. The dac runs at 4x FPGA clock frequency, outputting
analog converted samples 0 through 3 each FPGA clock cycle.

Mask Parameters

Parameter Vari-
able

Description

DAC board dac_brd Select which IBOB port to run this dac.
DAC clock rate
(MHz)

dac_clk_rateThe clock rate to run the dac. Must be 4x FPGA clock rate.

Sample period sam-
ple_period

Sets the period at which the dac outputs samples (ie 2 means every other cycle).

Show Implementa-
tion Parameters

show_paramAllows the user to set the implementation parameters.

Invert output clock
phase

in-
vert_clock

When unchecked, the dac samples the data aligned with the clock. When
checked, the dac samples the data aligned with an inverted clock.

Ports

Port Dir Data Type Description
dataX IN Fix_9_8 One of 4 digital inputs to be converted to analog.
sim_out OUT double Analog output of dac. Note: For simulation only.

Description

Usage

The dac takes 4 Fix_9_8 inputs and outputs an analog stream. The dac runs at 4x the FPGA clock speed.

To be updated.

DRAM

Block: DRAM (dram)
Block Author: Pierre Yves Droz (BEE2), David George(ROACH)
Document Author: Jason Manley, Laura Spitler

104 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– BEE2 Specific Info
* Addressing
* Data bus width

– ROACH Specific Info
* Interfacing Details
* DRAM CPU interface
* Example models

– Performance Tips

Summary

This block interfaces to the BEE2+ROACH’s 1GB DDR2 ECC DRAM modules. Commands that are clocked-in are
executed with an unknown delay, however, execution order is maintained. The underlying controller for the BEE2 and
the ROACH are different and not all features are supported across both platforms (see below for details).

4.2. Documentation 105

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description

DIMM dimm Selects which physical DIMM to use (four per user FPGA).
Data Type arith_typeInform Simulink how it should interpret the stored data.
Data binary
point

bin_pt Inform Simulink how it should interpret the stored data - specifically, the bit position in the
word where it should place the binary point.

Datapath
clock rate
(MHz)

ip_clockClock rate for DRAM. Default: 200MHz (400DDR).

Sample pe-
riod

sam-
ple_period

Is significant for clocking the block. Default: 1

Simulate
DRAM
using
ModelSim

use_simRequires the addition of the ModelSim block at the top level of the design. Used to simulate
DRAM block only.

Lesser Sim-
ulation Ad-
dress Width

??? If the ModelSim simulation is disabled a very basic simulation using BRAMs will be per-
formed. This parameter selects the address width to the bram memory and cannot exceed
20 (or so) bits.

Enable
bank man-
agement

bank_mgtAdvise leave off for BEE2. Allows multiple banks to be open at the same time. Always
enabled on ROACH (setting ignored).

Use wide
data bus
(288 bits)

wide_dataBurst writes require 288 bits. If not selected, provide a 144 bit bus which needs to be
supplied with data in consecutive clock cycles to form the 288 bits. 288 bit bus can make
for challenging routing! Not implemented on ROACH.

Use half-
burst

half_burstOnly store 144 bits per burst (wastes half capacity as the second 144 bits are unusable). If
enabled, requires at least two clock cycles to store 144 bits. Second clock cycle’s data is
forfeited. Not implemented on ROACH.

Use BRAM
FIFOs
(ROACH
only)

bram_fifosUse blockRAM FIFO’s in DRAM controller. This is required only if the application clock
rate is less than the dram clock rate to avoid overflows on the read interface. By default
distributed RAM will be used which exhibits better timing performance and reduces BRAM
resources.

Include
CPU In-
terface
(ROACH
only)

use_snifferIncludes the CPU interface which allows direct DRAM access from software. Including
this may introduce timing issues at very high DRAM controller frequencies.

106 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data Type Description
rst in boolean Resets the block when pulsed high
ad-
dress

in UFix_32_0 A signal which accepts the address. See below for details.

data_in in 144 or 288
bit unsigned

Accepts data to be saved to DRAM.

wr_be in UFix_18_0
or
UFix_36_0

Selects bytes for writing (write byte enable). It is normally 18 bits wide for a 144 bit
data bus, but if 288 bit data bus is selected, this becomes a 36 bit variable.

RWn in boolean Selects read or not-write. 1 for read, 0 for write.
cmd_tagin UFix_32_0 Accepts a user-defined tag for labelling entered commands. Not implemented on

ROACH.
cmd_validin boolean Clocks data into the command buffer.
rd_ack out boolean Used to acknowledge that the last data_out value has been read.
cmd_ackout boolean Acknowledges that the last command was accepted (when buffer is full, will not

accept additional commands). ROACH: Pin HI unless an attempt to clock in a com-
mand failed

data_outout UFix_144_0 Outputs data from DRAM, 144 bits at a time. Reads are in groups of 288 bits (ie, 2
clocks).

rd_tag out UFix_32_0 Outputs the identifier for the data on data_out (as submitted on cmd_tag when
the command was issued). Not implemented on ROACH.

rd_validout boolean Indicates that the data on data_out is valid.

Description

BEE2 Specific Info

Core details about the BEE2 memory interface can be found at the (static) BEE2 wiki:

http://bee2.eecs.berkeley.edu/wiki/Bee2Memory.html

Addressing

The 1GB storage DIMMs have 18 512Mbit chips each. They are arranged as 64Mbit x 8 (bus width) x 9 (chips per
side/rank) x 2 (sides/ranks). Two ranks (sides) per module with the 9 memory ICs connected in parallel, each holding
8 bits of the data bus width (72 bits). Each IC has four banks, with 13 bits of row addressing and 10 bits for column
addressing. Normally, each address would hold 64 bits + parity (8 bits), however, the BEE2 uses the parity space as
additional data storage giving a capacity of 1.125 GB per DIMM module.

From Micron’s datasheet on the MT47H64M8CD-37E (as used by CASPER in its Crucial 1GB CT12872AA53E
modules): The double data rate architecture is essentially a 4n-prefetch architecture, with an interface designed to
transfer two data words per clock cycle at the I/O balls. A single read or write access effectively consists of a single
4n-bit-wide, one-clock-cycle data transfer at the internal DRAM core and four corresponding n-bit-wide, one-half-
clock-cycle data transfers at the I/O balls.

Reads and writes must thus occur four-at-a-time. 4 x 72bits = 288 bits. Although the mapping of the logical to physical
addressing is abstracted from the user, it is useful to know how the DRAM block’s address bus is derived, as it impacts
performance:

4.2. Documentation 107

http://bee2.eecs.berkeley.edu/wiki/Bee2Memory.html

CASPER Toolflow, Release 0.1

Addressing Assignment
Column 12 3
Rank 13
Row 27 14
Bank 29 28
not used 31 30

Address bit assignments

Each group of 8 addresses selects a 144 bit logical location (the lowest 3 bits are ignored). For example, address 0x00
through 0x7 all address the same 144 bit location. To address consecutive locations, increment the address port by
eight. There are thus a total of 227 possible addresses. The block supports 2GB DIMMs (UNCONFIRMED) since 14
bits of addressing are reserved for row selection. The 1GB DIMMs using Micron 512Mb chips, however, only use 13
bits for row selection which results in 226 possible address locations. Care should be taken when addressing the 1GB
DIMMS as bit 27 of the address range is not valid. However, bits 28 and 29 are mapped. Since bit 27 is ignored, it
results in overlapping memory spaces.

Data bus width

The BEE2 uses ECC DRAM, however, the parity bits are used for data storage rather than parity storage. Thus, the
data bus is 72 bits wide instead of the usual 64 bits.

The memory module has a DDR interface requiring two reads or writes per RAM clock cycle (~200MHz), thus
requiring the user to provide 144 bits per clock cycle. Furthermore, as outlined above, data has to be captured in
batches of 288 bits. This can be done in one of two ways: in two consecutive blocks of 144 bits, or over a single 288
bit-wide bus. This is selectable as a mask parameter. If half-burst is selected, only a 144 bit input is required. 288 bits
are still written to DRAM, but the second 144 bits are not specified. Thus, half of the DRAM capacity is unusable.

ROACH Specific Info

The ROACH DRAM infrastructure currently doesn’t support half burst and wide data modes. Bank management is
always enabled. Tag buffers are not implemented. The DRAM controller clock rate can be one of the following: 150,
200, 266, 300 or 333. If a frequency other than these is provided the default of 266 will be used. The dram controller
has been known to work at 300MHz.

Interfacing Details

To write data into the DRAM, ‘RWn’ is held low, ‘cmd_valid’ is held high for a minimum of two FPGA clocks, and
the ‘address’ port is held constant for both clock cycles. For example, to write into addresses 0x00 and 0x01, keep
the address at 0x00 for both clocks. To read data out of the DRAM, hold ‘RWn’ high, keep the address constant for
two FPGA clock cycles, and toggle the ‘cmd_valid’ pin every clock. Note that a new word will be available on the
‘data_out’ pin on every clock cycle. ‘rd_valid’ will frame valid output data some indeterminate number of clock cycles
after the read ‘cmd_valid’ toggles. ‘cmd_ack’ is high unless an attempt to write a command into the input FIFO failed,
at which point it will go low synchronously with the issuing of the failed command.

Many ROACHs have been shipped with 1 GB dual rank DIMMs by default. The current DRAM controller is not able
to handle multiple ranks, so when a dual-rank DIMM is installed on the board, only half the memory is available. In
order to use the full 1 GB, a single rank DIMM is needed, or in principle a dual rank 2 GB module.

Note that on the ROACH all of the oddities of the DRAM addressing specified above for the BEE2 version are taken
care of for you, so you can just directly address locations 0 to (2^30 / 16) = 2^26 in the hardware.

108 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

DRAM CPU interface

If the block mask was set to include the CPU interface, the DRAM can be accessed by bytes through BORPH through
‘dram_memory’. The width of the CPU interface is only 128 bits (16 bytes), which results in discrepancy between
hardware and CPU address. After every 64 bits, there are 8 ECC bits not visible to the CPU. For example bytes
0x00-0x07 in the DRAM are seen as 0x00-0x07 in the CPU, byte 0x08 in the DRAM is not visible to the CPU, and
byte 0x09 in the DRAM is seen as byte 0x08 in the CPU.

Only 64MB of DRAM can be mapped into the ‘dram_memory’ register at any given time. You can select which 64MB
segment is mapped into the ‘dram_memory’ register though the first 32-bit word of the ‘dram_controller’ register. For
example, to access the first 64MB chunk of DRAM write 0x0 into this register and for the second 0x1.

The DRAM is most easily accessed using the KATCP function “read_dram”.

The second 32-bit word in the ‘dram_controller’ register indicates the DRAM controller ready flag. This value stores
will be 0x1 if the controller is operational. If it is not your DRAM will not operate at all. Typical problems causing
this would include using an unsupported RDIMM.

Example models

1) David George’s million channel ROACH spectrometer (“buf” block): rmspec.mdl

2) Laura Spitler’s simple design that reads and writes a counter into the DRAM: Dram roach rwramp.mdl

3) Jason Manley’s DRAM counter example: Dram counter test 10 1.gz

4) Tim Madden’s DRAM streaming output design (April 2015) https://github.com/argonnexraydetector/RoachFirmPy

Performance Tips

The performance of the DRAM block is dependent on the relative location of the addressed data and whether or not
the mode (read/write) is changed. For example, consecutive column addresses can be written without delay, however,
changing rows or banks incur delay penalties. See above for the address bit assignment.

To obtain optimum performance, it is recommended that the least significant bits be changed first (ie address the
memory from 0x0000000 through to address 0x20000000 on the BEE2). This will increment column addresses
first, followed by rank change, both of which incur little delay. Changing rows or banks can take twice as long. Further
information can be found in the DRAM module’s datasheet (Micron MT47H64M8 on the BEE2).

Changing the mode(read/write) results in large delays, so it is recommended that read and writes be done in bursts into
consecutive addresses. For a fabric clock speed of 200 MHz and DRAM speed of 266 MHz, a burst length of at least
32 words is recommended.

Bank management allows for three banks to be open simultaneously, reducing the overhead when switching between
these banks. This feature is always enabled on ROACH, but YMMV with the BEE2 controller.

Bi-directional GPIO

Block: Bi-directional GPIO (gpio_bidir)
Block Author: Brian Bradford
Document Author: Brian Bradford

4.2. Documentation 109

../../_static/files/rmspec.mdl
../../_static/files/Dram_roach_rwramp.mdl
../../_static/files/Dram_counter_test_10_1.gz
https://github.com/argonnexraydetector/RoachFirmPy

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Notes

Summary

The gpio_bidir block provides an Bi-diectional GPIO interface.

Mask Parameters

Parameter Variable Description
I/O group io_group Selects the GPIO header on the board.
Data bitwidth bitwidth Specifies data bitwidth.
GPIO bit index bit_index Specifies the pin on the selected GPIO header.

Ports

Port Dir Data Type Description
din in inherited Data input (size set by Data bitwidth parameter in bits)
in_not_out in inherited The control signal, 1 for input and 0 for output.
dout out inherited The data output.

Notes

When using bitwidths greater than one, you should specify a vector of bit indices to use. GPIO bit index should have
the same number of elements as the I/O bitwidth.

Example: If you set Data bitwidth to 4, you might want you use GPIO bit indices [0, 1, 2, 3].

GPIO

Block: GPIO (gpio)
Block Author: Pierre-Yves Droz
Document Author: Billy Mallard

110 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

– ROACH Specific Information
• Notes

Summary

The gpio block provides access to GPIO pins on any board that has GPIO headers.

Mask Parameters

Parameter Variable Description
I/O group io_group Selects the board architecture and the GPIO header on that board.
I/O direction io_dir Chooses whether the pin sends data out of or in to the FPGA.
Data Type arith_type Specifies data type of register.
Data bitwidth bitwidth Specifies data bitwidth.
Data binary point bin_pt Specifies the binary point position of data.
GPIO bit index bit_index Specifies the pin on the selected GPIO header.
Sample period sample_period Specifies sample period of interface.
Use DDR use_ddr ???
Pack register in the pad reg_iob ???
Register clock phase reg_clk_phase 0, 90, 180, 270.
Termination method termination None, Pullup, Pulldown.

Ports

Port Dir Data Type Description
reg_out in inherited Output from design to GPIO pin. Only in I/O in mode.
sim_out out double Simulation output of pin value. Only in I/O in mode.
sim_in in double Simulation input of pin value. Only in I/O out mode.
reg_in out inherited Input from GPIO pin to design. Only in I/O out mode.

Description

ROACH Specific Information

Main article: ROACH FPGA Interfaces

4.2. Documentation 111

https://casper.berkeley.edu/wiki/ROACH_FPGA_Interfaces

CASPER Toolflow, Release 0.1

Each GPIO header has one direction selector that controls the direction of all 8 of its pins. You must set a direction.
So, in addition to your normal gpio block (configured for I/O group ROACH:gpio[ab]), add another gpio block,
and set the following parameters:

• I/O group = ROACH:gpio[ab]_oe_n

• I/O direction = out

• bitwidth = 1

• bit_index = 0

The direction selector takes a boolean value as its input, so wire it to a Xilinx constant block:

• 0 - output from ROACH

• 1 - input to ROACH

The two SMA connectors on the back of the board are wired directly to GPIO pins. Specifically, J11 and J10 are wired
to pins 6 and 7 on GPIO A.

Notes

The order of the FPGA GPIOs have been changed from “3 2 1 0 7 6 5 4” to now match the order printed on the PCB
“0 1 2 3 4 5 6 7”.

Old mapping: 3 2 1 0 7 6 5 4

New mapping: 0 1 2 3 4 5 6 7

QDR

Block: QDR (qdr)
Block Author: David George
Document Author: David George

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Issuing Commands
– Bursting
– Addressing
– ECC Bits

112 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Summary

This block interfaces to the QDR SRAM devices on ROACH boards. Commands are executed at the rate they are
applied, with synchronous and fixed timing. Data is always presented 10 cycles after a read is issued. Read and write
data ports have 100% duty cycles.

Mask Parameters

Parameter Vari-
able

Description

QDR Chip which_qdrSelects which physical QDR device to use (Two on ROACH V1).
Simulation QDR Ad-
dress Width

qdr_awidthSpecifies the width of the address bus of the simulation model. (Limited to 18)

Use CPU Interface use_cpu Specify whether or not to include the QDR CPU interface, the removal of
which may improve timing performance.

Ports

Port Dir Data
Type

Description

rd_en in boolean Asserting this signal issues a read command. See below for details on issuing commands.
wr_en in boolean Asserting this signal issues a write command. See below for details on issuing commands.
be in UFix_4 Selects bytes for writing (write byte enable). See below for behaviour relating to bursting

and ECC bits.
ad-
dress

in UFix_32Signal used as the QDR address. See below for behaviour relating to addressing.

wr_dataout UFix_36The data to written into the QDR. Bits 35:32 are ECC bits and are cleared when the proces-
sor writes to the corresponding byte. See below for behaviour relating to bursting and ECC
bits.

data_validout boolean An active high signal indicating that the read data is valid.
ack out boolean A signal indicating that the CPU interface is not accessing the memory.
phy_readyout boolean A signal indicating that the QDR PHY has completed calibration, which takes very roughly

100us.
cal_fail out boolean A signal indicating that the PHY calibration has failed.

Description

This document is a draft and requires verification.

Issuing Commands

There are two types of commands: reads and writes. They are issued by the rd_en and wr_en signals respectively. The
QDR address is presented on the same cycle that the command is issues. One type of command cannot be issued in
two consecutive cycles. When this happens, the second issue will be ignored. This is due to QDR supporting bursts
to reduce data rates on the control signals. Further, if a read and write are issued at the same time the write will be
ignored. However, if the previous command was a valid read, the current read will be ignored and the write will take
preference.

4.2. Documentation 113

CASPER Toolflow, Release 0.1

Bursting

When issuing reads and writes, data is presented on the respective data ports for two cycles. When issuing a write
command, the data_in and be ports must be set for both the issuing cycle and the following cycle. During a read
response, data is issued on the same cycle that the data_valid is asserted and on the following cycle.

Addressing

The address presented when a command is issued addresses a full burst worth of memory i.e. 72 bits of data.

ECC Bits

In hardware the QDR word is composed of four 9 bit components which are masked by the byte_enable signal. Each
of these component include 8 data bits and a single ECC bit. This clashes with the byte-enable on the processor, which
mask only 8 bits. For this reason the ECC bit gets cleared when the CPU writes to a byte of QDR memory. With this
yellow block, the QDR data_in and data_out ports have the ECC bits on lines 35:32. This allows the four processor
bytes to cleanly map to bits 31:0 of the data_in and data_out ports. This leads to a side-effect in the byte-enable
behaviour as follows: be[0] masks data_in bits [7:0] and [32], be[1] mask data_in bits[15:8] and [33] etcetera.

Snapshot

Block: Snapshot (snapshot)
Block Author: Andrew Martens
Document Author: Andrew Martens

Contents

• Summary
• Mask Parameters
• Ports
• Software interface
• Description

– Usage

Summary

The snapshot block is configurable block for capturing blocks of data with a standard interface supporting generic
software drivers. It combines functionality from (and deprecates) the snap, sc, snap_64 and snap_circ blocks.

114 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description

Storage medium storage Specifies whether to store the data in BRAM or DRAM
DRAM dimm dram_dimmSpecifies which dimm to use if using DRAM as storage medium.
DRAM clock rate dram_clockSpecifies the DRAM controller clock rate if using DRAM as a storage medium.
No. of Samples (2?) nsam-

ples
Specifies the maximum depth of the data storage buffer

Data width data_widthThe bit width of the input data
Start delay support offset Option to support inserting a programmable number of samples between the

trigger for the start of capture, and data capture itself.
Circular capture sup-
port

circap Option to support continual capture until a signal to stop is received.

Extra value capture
support

value Option to support the capture of a value to a register as the first data item is
captured.

Use DSP48s to im-
plement counters

use_dsp48Option to use DSP48s to implement various internal counters to save logic.

Ports

Port Dir Data Type Description
din IN unsigned_8_0 OR un-

signed_16_0 OR un-
signed_32_0 OR un-
signed_64_0 OR un-
signed_128_0

The data to be captured. Data is stored with oldest data in the lowest ad-
dresses and in little endian format.

we IN boolean After a trigger is begun, enables a write to the data buffer.
trig IN boolean When high, triggers the beginning of a data capture. Thereafter, every en-

abled data is written to the data buffer. If offset capture is enabled, capture
can be delayed by a configurable number of samples after the trigger. If cir-
cular capture is enabled, capture continues until the input to the stop port
goes high.

stop IN boolean Triggers the end of data capture when in circular capture mode.
vin IN unsigned_32_0 When extra value capture is enabled the value on this port is captured on

the same sample as the first data item captured.
ready OUT boolean When using DRAM as a storage buffer, signals that the DRAM controller

has finished calibration and is ready to receive data.

4.2. Documentation 115

CASPER Toolflow, Release 0.1

Software interface

Name Dir Data Type
ctrl Write unsigned_32_0
trig_offset Write unsigned_32_0
val Read unsigned_32_0
status Read unsigned_32_0
tr_en_cnt Read unsigned_32_0
bram Read unsigned_32_0
dram Read unsigned_32_0

Description

Usage

Under TinySH/BORPH, this device will have 3 sub-devices: ctrl, bram, and addr. ctrl is an input register.
Bit 0, when driven from low to high, enables a trigger/data capture to occur. Bit 1, when high, overrides trig to
trigger instantly. Bit 2, when high, overrides we to always write data to bram. addr is an output register and records
the last address of bram to which data was written. bram is a 32 bit wide Shared BRAM of the depth specified in
Parameters.

Snapshot Capture

Block: Snapshot Capture (snap)
Block Author: Aaron Parsons
Document Author: Aaron Parsons, Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

The snap block provides a packaged solution for capturing data from the FPGA fabric and making it accessible from
the CPU. Snap captures to a 32 bit wide shared BRAM.

116 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Mask Parameters

Parameter Vari-
able

Description

No. of Samples
(2?)

nsam-
ples

Specifies the depth of the Shared BRAM(s); i.e. the number of 32bit samples which
are stored per capture.

Ports

Port Dir Data
Type

Description

din IN un-
signed_32_0

The data to be captured. Regardless of type, the bit-level representation of these numbers
are written as 32bit values to the Shared BRAM.

trig IN boolean When high, triggers the beginning of a data capture. Thereafter, every enabled data is
written to the shared BRAM until it is full.

we IN boolean After a trigger is begun, enables a write to Shared BRAM.

Description

Usage

Under TinySH/BORPH, this device will have 3 sub-devices: ctrl, bram, and addr. ctrl is an input register.
Bit 0, when driven from low to high, enables a trigger/data capture to occur. Bit 1, when high, overrides trig to
trigger instantly. Bit 2, when high, overrides we to always write data to bram. addr is an output register and records
the last address of bram to which data was written. bram is a 32 bit wide Shared BRAM of the depth specified in
Parameters.

64 Bit Snapshot

Block: 64 Bit Snapshot (snap64)
Block Author: Aaron Parsons
Document Author: Aaron Parsons, Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

4.2. Documentation 117

CASPER Toolflow, Release 0.1

Summary

The snap block provides a packaged solution for capturing data from the FPGA fabric and making it accessible from
the CPU. Snap64 captures to 2x32 bit wide shared BRAMs to effect a 64 bit capture.

Mask Parameters

Parameter Vari-
able

Description

No. of Samples
(2?)

nsam-
ples

Specifies the depth of the Shared BRAM(s); i.e. the number of 64bit samples which
are stored per capture.

Ports

Port Dir Data
Type

Description

din IN un-
signed_64_0

The data to be captured. Regardless of type, the bit-level representation of these numbers
are written as 64bit values to the Shared BRAMs.

trig IN boolean When high, triggers the beginning of a data capture. Thereafter, every enabled data is
written to the shared BRAM until it is full.

we IN boolean After a trigger is begun, enables a write to Shared BRAM.

Description

Usage

Under TinySH/BORPH, this device will have 3 sub-devices: ctrl, bram_msb, bram_lsb, and addr. ctrl is an
input register. Bit 0, when driven from low to high, enables a trigger/data capture to occur. Bit 1, when high, overrides
trig to trigger instantly. Bit 2, when high, overrides we to always write data to bram. addr is an output register
and records the last address of bram to which data was written. bram_msb and bram_lsb are 32 bit wide Shared
BRAMs of the depth specified in Parameters. bram_msb holds the upper 32 bits of din while bram_lsb holds
the lower 32 bits of din.

Software Register

Block: Software Register (software register)
Block Author: Pierre-Yves Droz
Document Author: Henry Chen

118 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

Inserts a unidirectional 32-bit register shared between the FPGA design and the PowerPC bus.

Mask Parameters

Parameter Variable Description
I/O direction io_dir Chooses whether register writes To Processor or reads From

Processor.
Data Type arith_type Specifies data type of register.
Data bitwidth bitwidth Specifies data bitwidth. Hard-coded at 32 bits.
Data binary
point

bin_pt Specifies the binary point position of data.

Sample period sam-
ple_period

Specifies sample period of interface.

Ports

Port Dir Data Type Description
reg_out in inherited Output from design to processor bus. Only in To Processor mode.
sim_out out double Simulation output of register value. Only in To Processor mode.
sim_in in double Simulation input of register value. Only in From Processor mode.
reg_in out inherited Input from processor bus to design. Only in From Processor mode.

Description

A software register is a shared interface, meaning that it is attached to both the FPGA fabric of the System Generator
design as well as the PowerPC bus. The registers are unidirectional; the user must choose at design-time whether the
register is in To Processormode (written by the FPGA fabric and read by the PowerPC) or in From Processor
mode (written by the PowerPC and read by the FPGA fabric).

The bitwidth is fixed at 32 bits, as it is attached to a 32-bit bus, but the Simulink interpretation of the data type and
binary point is controllable by the user. The data type and binary point parameters entered into the mask are enforced
by the block; the block will cast to the specified data type and binary point going in both directions.

4.2. Documentation 119

CASPER Toolflow, Release 0.1

SRAM

Block: SRAM (sram)
Block Author: Pierre Yves Droz, Henry Chen
Document Author: Ben Blackman

Contents

• Summary
• Mask Parameters
• Ports
• Description

– Usage

Summary

The sram block represents a 36x512k SRAM chip on the IBOB. It stores 36-bit words and requires 19 bits to access
its address space.

Mask Parameters

Parameter Variable Description
SRAM sram Selects which SRAM chip this block represents.
Data Type arith_type Type to which the data is cast on both the input and output.
Data binary point (bitwidth is 36) bin_pt Position of the binary point of the data.
Sample period sample_period Sets the period with reference to the clock frequency.
Simulate SRAM using ModelSim use_sim Turns ModelSim simulation on or off.

Ports

Port Dir Data Type Description
we IN boolean A signal that when high, causes the data on data_in to be written to address.
be IN un-

signed_4_0
A signal that enables different 9-bit bytes of data_in to be written.

address IN un-
signed_19_0

A signal that specifies the address where either data_in is to be stored or from
where data_out is to be read.

data_in IN arith_type_36 A signal that contains the data to be stored.
data_out OUT arith_type_36 A signal that contains the data coming out of address.
data_valid OUT boolean A signal that is high when data_out is valid.

Description

120 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Usage

The SRAM block is 36x512k, signifying that its input and output are 36-bit words and it can store 512k words. Each
clock cyle, if we is high, then each bit of be determines whether each 9-bit chunk will be written to address. be is
4 bits with the highest bit corresponding to the most significant chunk (so if be is 1100, only the top 18 bits will be
written). If we is low, then the SRAM block ignores data_in and be and reads the word stored at address.

XSG Core Config

Block: XSG Core Config (XSG core config)
Block Author: Pierre-Yves Droz
Document Author: Henry Chen

Contents

• Summary
• Mask Parameters
• Ports
• Description

Summary

The XSG Core Config block is used to configure the System Generator design for the bee_xps toolflow. Settings
here are used to configure the Xilinx System Generator block parameters automatically, and control toolflow script
execution. It needs to be at the top level of all designs being compiled with the bee_xps toolflow.

Mask Parameters

Parameter Variable Description
Hardware Platform hw_sys Selects the board/chip to compile for.
Include Linux add-on board
support

ibob_linux Includes BORPH-capable Linux for IBOB.

User IP Clock source clk_src Selects the clock on which to run the System Generator cir-
cuit.

GPIO Clock Pin I/O group gpio_clk_io_group Selects GPIO type to use as clock input if using user clock on
an IBOB.

GPIO Clock Pin bit index gpio_clk_bit_indexSelects GPIO pin to use as clock input if using user clock on
an IBOB.

User IP Clock rate (MHz) clk_rate Generates timing constraints for the design.
Sample Period sample_period Sample period for Simulink simulations.
Synthesis Tool synthesis_tool Selects the tool to use for synthesizing the design’s netlist.

4.2. Documentation 121

CASPER Toolflow, Release 0.1

Ports

None.

Description

The function of the XSG Core Config block is to set parameters for the toolflow scripts. It supercedes the use of
the Xilinx System Generator block and has supplemental options for board-level parameters. Although a System
Generator block is still needed in all designs, the XSG Core Config block automatically changes the System Generator
block settings based on its own parameters.

The settings in the XSG Core Config block are used to determine the system-level conditions of the SysGen design.
It sets which of the toolflow-supported boards the design is being compiled for, from which it determines what FPGA
to target, as well as clocking options like clock source and timing constraints. The Sample Period and Synthesis Tool
parameters are included in the block so that all system-level options available in the System Generator block could be
handled by this single block.

Gaussian Random Number Generator

Block: Gaussian Random Number Generator (Gaussian Random Number Generator)
Block Author: Kaushal D. Buch
Document Author: Kaushal D. Buch

Contents

• Summary
• Ports
• Description
• Test Results

Summary

This is a low foot-print Gaussian noise source for testing CASPER based hardware designs during development. It
contains a pair of uncorrelated noise and each noise data is available as four parallel output streams, which are directly
compatible to the iADC outputs.

122 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Ports

Port Dir Data
Type

Description

reset IN boolean Reset signal to initialize the noise sources. Reset is synchronous active high
signal.

Noise_Out11 to
Noise_Out14

OUT 8-bit
signed

Four uncorrelated streams of noise samples.

Noise_Out21 to
Noise_Out24

OUT 8-bit
signed

Four uncorrelated streams of noise samples. These are also uncorrelated with
respect to Noise_Out11 to Noise_Out14 signals.

Description

The noise source blocks do not use any specific resources like BRAMs, multipliers etc. The Kurtosis value of these
sources is around 2.9 to 2.93. Both of these sources can be used as individual noise source or collectively as un-
correlated noise sources. The resource utilization is around 2 to 3 % for a single noise source on Virtex-5 SX95
FPGA.

Note: The seeds of the individual noise sources can be changed. But the seeds need to be mutually uncorrelated for a
particular source i.e. considering only one source say Noise Source -1 ,all the fourteen seeds within that source have
to mutually uncorrelated.

Test Results

Test was carried out by integrating these uncorrelated sources with a pocket correlator design running at 600MHz
ADC clock and having 1 second integration time, implemented on ROACH. The results show a flat spectrum across
all the FFT channels and a normalized cross-correlation of about 0.001.

Correlation Control Block

Block: Correlation Control Block (CCB)
Block Author: Kaushal D. Buch, GMRT, India
Document Author: Kaushal D. Buch, GMRT, India

Contents

• Summary
• Ports
• Description
• Test Results

4.2. Documentation 123

CASPER Toolflow, Release 0.1

Summary

Correlation control block takes a pair of uncorrelated digital noise sources in the input and generates a pair of output
noise with correlation. The amount of correlation can be selected from a set of pre-defined values. This block is an
extension to the Gaussian Random Number block in the CASPER library.

Ports

Port Dir Data
Type

Description

noise_in1 to
noise_in4

IN 8-bit
signed

Four uncorrelated streams from the output of the Gaussian Random Number
Generator.

noise_in5 to
noise_in8

IN 8-bit
signed

Four uncorrelated streams from the output of the Gaussian Random Number
Generator.

corr_sel_in IN 3-bit
un-
signed

Selection of the amount of correlation coefficient at the output. :: Selection - 0
- uncorrelated (~0%) 1 - 5% correlation 2 - 10% correlation 3 - 20% correlation
4 - 50% correlation 5 - 100% correlation

corr_noise_out1
to
corr_noise_out4

OUT 8-bit
signed
(Fix8_7)

Four streams of output digital noise.

corr_noise_out5
to
corr_noise_out8

OUT 8-bit
signed
(Fix8_7)

Four streams of output digital noise.

Description

Correlation Control Block (CCB) is an extension to the existing library block called Gaussian Random Number Gener-
ator (GRNG). CCB can be used along with GRNG block to get variable correlation between two input noise channels.

The correlation control block uses an uncorrelated noise source whose coupling to the two input channels is varied
to control the correlation. By varying the ratio of the variance of common noise source (Pc) to the variance of input
channels (P1 and P2) we get the correlation coefficient as Pc / (P+Pc) (Note: We assume that P1 = P2 = P, i.e.
components from input channels have same variance).

Currently, there is a facility to select the following values of correlation through software register - 0% (uncorrelated),
5%, 10%, 20%, 50% and 100% (correlated).

Test Results

The variable correlation digital noise source design was tested with the GRNG for a 300MHz BW PoCo with 0.89s
integration on ROACH.

4.2.2 The CASPER Toolflow

The current Python-based CASPER toolflow (sometimes called jasper, to distinguish it from the MATLAB-based
flow which supported ROACH2 and earlier platforms) was designed to enable users to quickly and effectively turn
high-level DSP designs into FPGA bitcode, without having to worry about low-level implementation details.

While the ultimate goal of the toolflow is to support (or at least not prohibit) a wide range of mechanisms to input DSP
designs, and be agnostic about the target FPGA’s vendor, in practice the toolflow pipeline is as follows:

124 Chapter 4. mlib_devel directory structure

Gaussian_Random_Number_Gen.html

CASPER Toolflow, Release 0.1

• A user specifies a DSP design using MATLAB’s graphical programming tool, Simulink.

• I/O to/from the DSP pipelines are specified using CASPER’s xps_library Simulink blocks.

• DSP functionality is specified using CASPER’s casper_library Simulink blocks.

• A user invokes the CASPER toolflow, which generates a Vivado project, complete with appropriate infrastruc-
ture and constraints to support the user’s I/O requirements.

• Vivado compiles the toolflow-supplied project into a bitstream.

• The toolflow appends meta-data to this bitstream, describing and run-time, software-accessible, components in
the firmware design.

• The bitstream and meta-data are delivered to the user in the form of a .fpg file.

• This file is programmed on to a compatible board using the casperfpga Python library.

• casperfpga provides Python methods for interacting with a running board (configuring registers, etc.)

Goals of the CASPER Toolflow

The ultimate goal of the tooflow is simple: make FPGA programming easy, so researchers (largely radio astronomers)
can quickly develop and deploy instrumentation to meet their scientific requirements. More concretely, the CASPER
toolflow aims to:

• Make complex interfaces (1/10/40/100 Gb Ethernet, SRAM, DRAM, ADCs, DACs, etc.) available as sources
and sinks in a DSP design without requiring knowledge of their low-level implementation.

• Facilitate easy porting of designs between FPGA platforms, by abstraction of these underlying interfaces.

• Provide a straight-forward integration with control and monitoring software.

While the jasper toolflow described in this documentation is (relatively) new, it builds on CASPER’s original
MATLAB-based flow, which was designed over a decade ago, and has quietly powered many scientific instruments
over its lifetime.

Toolflow Terminology

When discussing the CASPER toolflow, it helps to first define some terminology commonly used in the collaboration.

Frontend : The part of the CASPER software stack used for design-entry. In practice, this means Simulink, though
there are perpetual aspirations to support other entry methods, particularly non-graphical ones.

Backend : The vendor-specific part of the CASPER software stack used to compile a toolflow-generated project. In
practice, this means Xilinx Vivado, but could also in principle be ISE or Altera Quartus.

Middleware / Toolflow-proper : The Python-based part of the CASPER software stack used to turn the design
information entered into the Frontend into a complete specification for a Backend compile.

Yellow Blocks : Interface blocks (ADCs/DACs/Ethernet/Memory) which are used by the Frontend to give the user
access to a platform’s peripherals. Yellow Blocks in the Frontend are supported by Python classes in the toolflow
middleware. These classes ultimately determine what source files, constraints, and HDL incantations are required to
instantiate a Yellow Block in hardware.

Software Register : A Software Register is a yellow block encapsulating a 32-bit register in a design which can be
accessed at runtime, usually via the casperfpga FPGA control library. These registers are usually used to feed
control signals (MUX switch controls / enable signals / etc.) into a design.

Platform YAML : A YAML file defining the physical properties of an FPGA hardware platform.

4.2. Documentation 125

https://arxiv.org/abs/1611.01826
https://arxiv.org/abs/1611.01826
http://yaml.org/

CASPER Toolflow, Release 0.1

jasper.per : A YAML file output by the toolflow Frontend which specifies what was designed by the user. In principle,
any tool which can generate such a file is a viable toolflow Frontend candidate.

castro : A well-meaning attempt to provide an abstract, well-defined, platform-independent interface between the
tooflow Middleware and the platform-/vendor-specific Backend. This interface is a Python Castro object, dumped
as a YAML file! In practice, developers have subverted the original definitions of the Castro class to make it easier
to get platform-specific data between stages of the toolflow, and somewhat undermined its purpose.

Parts of the Toolflow

There are several components to the toolflow which are key to its functionality. All toolflow related files (except those
used by the Frontend) are found in the jasper_library subdirectory of the toolflow repository.

Some documentation of the Pythonic parts of the toolflow can be found in the auto-generated docs. Here we focus on
giving an overview of the purpose of different parts of the toolflow, as well as providing some (hopefully) instructive
examples of their usage.

Peripherals file

The jasper.per peripherals file is output by the toolflow Frontend. As an example, a design for the SNAP board,
which contains two software registers – one called a, which feeds a value into the DSP pipeline, and one called b,
which reads a value out of the DSP pipeline – is shown below:

yellow_blocks:
snap_tut_intro/SNAP1:
name: SNAP1
fullpath: snap_tut_intro/SNAP1
tag: xps:xsg
hw_sys: 'SNAP:xc7k160t'
clk_src: sys_clk
clk_rate: 100
use_microblaze: off
sample_period: 1
synthesis_tool: XST

snap_tut_intro/a:
name: a
fullpath: snap_tut_intro/a
tag: xps:sw_reg
io_dir: From Processor
io_delay: 0
sample_period: 1
names: reg
bitwidths: 32
bin_pts: 0
arith_types: 0
sim_port: on
show_format: off

snap_tut_intro/b:
name: b
fullpath: snap_tut_intro/b
tag: xps:sw_reg
io_dir: To Processor
io_delay: 0
sample_period: 1
names: reg

(continues on next page)

126 Chapter 4. mlib_devel directory structure

http://yaml.org/
http://yaml.org/
https://github.com/casper-astro/mlib_devel
src/jasper_library_modules/modules.html

CASPER Toolflow, Release 0.1

(continued from previous page)

bitwidths: 32
bin_pts: 0
arith_types: 0
sim_port: on
show_format: off

user_modules:
snap_tut_intro:
clock: clk
ports:

- snap_tut_intro_a_user_data_out
- snap_tut_intro_b_user_data_in

sources:
- /foo/snap_tut_intro/sysgen/hdl_netlist/snap_tut_intro.srcs/sources_1/imports/

→˓sysgen
- /foo/snap_tut_intro/sysgen/hdl_netlist/snap_tut_intro.srcs/sources_1/ip/*.coe
- /foo/snap_tut_intro/sysgen/hdl_netlist/snap_tut_intro.srcs/sources_1/ip/*/*.

→˓xci

This YAML structure has two keys.

• yellow_blocks is a hierarchical dictionary of all yellow blocks in the user’s design, along with their param-
eters. The tag field of each entry in this dictionary indicates what type of block this is. The yellow_blocks
dictionary always contains a block with the tag xps:xsg, which is a special yellow block which contains
information of the platform the user is targeting. In this case, the target is a SNAP board.

• user_modules is a dictionary listing the module(s) in a design which have been compiled by the Frontend.
For a Simulink design, this is everything in the user’s model which is not a yellow block. Each module’s
dictionary should define the name of its clock port, other data ports, and it’s source file locations. In the case of
a Simulink design, the latter are the outputs of the Xilinx System Generator compiler.

Platforms

jasper_library/platforms/<platform>.yaml contains YAML files describing the physical properties
of a hardware platform. In order for a board to be supported by the CASPER toolflow it must have a Platform YAML
file present in this directory. The name of this file should match the name of the compile platform, as understood by
the toolflow Frontend. For example, the head of the YAML file snap.yaml which defines the SNAP platform is
shown below.

name: snap
manufacturer: Xilinx
fpga: xc7k160tffg676-2
backend_target: vivado
sources: []
constraints: []
provides:

- sfp0
- sfp1
- zdok0
- HAD1511_0
- HAD1511_1
- HAD1511_2
- lmx2581

pins:
sys_clk_p:
loc: E10

(continues on next page)

4.2. Documentation 127

CASPER Toolflow, Release 0.1

(continued from previous page)

iostd: LVDS_25
sys_clk_n:
loc: D10
iostd: LVDS_25

led:
iostd: LVCMOS25
loc:

- C13
- C14
- D13
- D14
- E12
- E13

zdok0:
iostd: LVCMOS25
loc:

- AA23
- AB24
- Y25
- Y26
- U24
- U25
- lots more pins....

The required fields in this YAML file are:

• name: The name of the platform, as understood by the tooflow (i.e. matching the name in the hw_sys param-
eter of the yellow block tagged xps:xsg). This should match the name of the file <name>.yaml.

• manufacturer: A string indicating the platform’s FPGA manufacturer. This can be used to make implementa-
tion decicions as the toolflow builds a user’s design. Currently, only Xilinx is supported.

• fpga: The FPGA model the platform uses. This should be a string in the form understood by the FPGA vendor’s
compile tools. For example, for Xilinx platforms, it should be the appropriate part for a create_project
... -part <fpga> tcl command call.

• backend_target: A string indicating the Backend compile tool to use. Currently the only supported target is
vivado, which corresponds to the VivadoBackend class. Once upon a time ise was also supported, as a
proof-of-concept experiment in compiling for pre-7-series Xilinx FPGAs. This probably no longer works.

• sources: A list defining source files which should be included in compiles for this platform. Ideally this should
be an empty list [], since a more toolflow-friendly way of adding files is via the platform-specific MSSGE
Yellow block.

• constraints: A list defining constraints files which should be included in compiles for this platform. Ideally
this should be an empty list [], since a more toolflow-friendly way of adding files is via the platform-specific
MSSGE Yellow block.

• provides: A list of strings detailing the capabilities of the board. These are used for loose consistency checks
when compiling, as they are matched against requires strings defined by YellowBlock instances. For
example, a 10Gb Ethernet yellow block might require sfp0 - if the platform does not provide this, the compile
fill fail consistency checks.

• pins: The bulk of the platform file contains pin location and iostandard definitions, in a a dictionary of the form
{<pin name>: {loc: <loc>, iostd: <iostd>}. Either loc or iostd entries may be lists.
If they are both lists, their lengths should match. These friendly pin names are used by the toolflow to perform
platform-agnostic definitions of external port connections.

128 Chapter 4. mlib_devel directory structure

src/jasper_library_modules/toolflow.html#toolflow.VivadoBackend
src/jasper_library_modules/yellow_blocks.html#yellow_blocks.yellow_block.YellowBlock

CASPER Toolflow, Release 0.1

The VerilogModule Class

The VerilogModule class is a Pythonic encapsulation of a verilog module. It provides simple Python methods
to build a module by adding ports, signals, assignment statements, and sub-module instantiations. Code generation
methods allow the VerilogModule to output valid verilog describing itself.

The VerilogModule class also provides the ability to instantiate sub-modules with Wishbone interfaces, and will
quietly manage their address spaces and arbitration.

While relatively simple, the VerilogModule class is central to the functionality of the toolflow, which is, ultimately,
just a code-generator. Adding support for new hardware to the toolflow entails heavy use of the VerilogModule
class by YellowBlock objects.

Yellow Blocks

A yellow block is a Frontend module (so-called because in Simulink these modules are, literally, yellow blocks) whose
instantiation in a user’s design triggers the toolflow to insert some code into the generated code at compile time. A
dedicated tutorial has been written to explain how to add new yellow blocks to the tooflow Frontend and Middleware.

In the case of the Frontend, adding a yellow block means putting a new block in the Simulink xps_library and
creating a GUI (or mask in Simulink parlance) with which users can set the block’s parameters. For example, for a
10Gb Ethernet yellow block, at a minimum the block mask should allow the user to pick the physical port on their
board they with which then want the Ethernet block to be associated. The mask might also allow parameters to be
configured, such as the MAC address of the underlying Ethernet core, or sizes of transmit/receive buffers.

In the case of the Middleware, adding a yellow block means creating a new YellowBlock subclass. This subclass
defines how the presence of a yellow block in the Frontend impacts the constaints and verilog delivered to the Backend
compiler.

Current YellowBlock subclasses can be found in the toolflow repository at jasper_library/
yellow_blocks and alongside the yellow block tutorial serve as instructive examples. Unless a block is unusually
simple, it probably will implement at least three methods:

• initialize(): Configure parameters of the yellow block, such as the source files it requires.

• modify_top(top): Modify theVerilogModule instance, top, which describes the top-level of the user’s
design. Here you can make use of VerilogModule methods to instantiate sub-modules, and connect them to
stuff.

• gen_constraints(): Return a list of constraint objects, defining external pin connections, clock rates, or
other constraints the toolflow Backend knows how to deal with.

How it all fits together

The toolflow is executed via the exec_flow.py script. A complete compile is invoked with

python exec_flow.py --perfile --frontend --middleware --backend --software -m <model_
→˓name>

Where the final argument indicates the Frontend file (Simulink model) which should be used as the starting point of
the compile. Each of the flags triggers a different stage of the toolflow compile process, and following these stages
gives an idea of how the toolflow fits together.

4.2. Documentation 129

src/jasper_library_modules/verilog.html#verilog.VerilogModule
https://opencores.org/howto/wishbone
http://casper-tutorials.readthedocs.io/en/latest/tutorials/snap/tut_gpio_bidir.html
src/jasper_library_modules/yellow_blocks.html#yellow_blocks.yellow_block.YellowBlock
http://casper-tutorials.readthedocs.io/en/latest/tutorials/snap/tut_gpio_bidir.html

CASPER Toolflow, Release 0.1

Peripheral file generation / Frontend compile

The --perfile flag causes the toolflow’s Frontend to output a toolflow-standard jasper.per peripherals file,
which contains information about all the yellow blocks in the design, and the locations of source files which the
Frontend is responsible for compiling. The --frontend flag causes the frontend to compile any user IP it is
responsible for synthesizing. In the case of the Simulink Frontend, this is essentially a call to Xilinx System Generator,
triggering a compile of all the DSP blocks in the user’s Simulink model.

These actions correspond to the toolflow methods:

ToolflowFrontend.gen_periph_file()
ToolflowFrontend.compile_user_ip()

In practice, since these methods ultimately invoke MATLAB calls, while the toolflow can call them via Python meth-
ods, usually they are run directly in MATLAB, via the command jasper_frontend. After this stages of the
compile, a jasper.per file has been generated, which serves as the input to future compile stages. This file con-
tains information about all the yellow blocks in the Frontend model, as well as the locations of any synthesized code
which needs to be included in the final project.

Middleware Project Building

The --middleware flag invokes the core toolflow methods which build an FPGA project. These methods are:

Toolflow.gen_periph_objs()
Toolflow.build_top()
Toolflow.generate_hdl()
Toolflow.generate_consts()
Toolflow.write_core_info()
Toolflow.write_core_jam_info()
Toolflow.constraints_rule_check()
Toolflow.dump_castro()

In chronological order:

1. gen_periph_objs() reads jasper.per to figure out which yellow blocks are in a user’s design. It then
constructs the associated YellowBlock objects, and calls their initialize() methods.

2. build_top() creates a VerilogModule instance to represent the top-level of the user’s design in HDL.

3. generate_hdl() instantiates relevant yellow block code in this top-level module, by calling each
YellowBlock sub-class’s modify_top method. It also instantiates the user’s DSP IP (i.e., the blocks com-
piled by System Generator. At the end of this method the fully populated VerilogModule instance is turned
into a verilog source file, and added to the project the toolflow is constructing.

4. generate_consts() gathers the constraints required by each yellow block via their gen_constraints
methods. Where applicable, symbolic contraints (such as the LOCs) are turned into physical constraints via the
pin mappings in the relevant platform’s YAML configuration file.

5. write_core_info() / write_core_jam_info() collects information about the runtime-accessible
registers in the design, and writes them to file(s).

6. constraints_rule_check() checks for ports in the top-level verilog which are missing associated con-
straints.

7. dump_castro() dumps a description of the now complete project specification to disk, as a YAML dump of
a Castro instance.

130 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Backend compiling

The --backend flag triggers instantiation of a ToolflowBackend object (in practice, this will invariably be a
VivadoBackend. Two methods are run against this object:

ToolflowBackend.import_from_castro()
ToolflowBackend.compile()

The first of these, import_from_castro, reads the output of the toolflow Middleware, essentially copying at-
tributes of the Castro objects to internal attributes. The second, compile(), takes the imported pythonic repre-
sentation of the project and delivers a bitstream. In the VivadoBackend case, everything in the project is elaborated
into a tcl script, which is then run by Vivado in batch mode.

Software generation

When the Backend finishes compiling, it will (hopefully!) have generated a viable FPGA bitstream. All that remains
is to append meta data to this bitstream, which will tell the casperfpga software library what registers are present
in the bitstream. This concatenation of bitstream and metadata is generated by

ToolflowBackend.mkfpg()

Which delivers a custom-CASPER-format .fpg file.

Users can load this file onto a CASPER-supported FPGA platform with the casperfpga library:

import casperfpga
myfpga = casperfpga.CasperFpga(<hostname>)
myfpga.upload_to_ram_and_program(<fpgfile>.fpg)
Read and write registers:
myfpga.registers.reg_a = 0xdeadbeef
#...etc.

Supporting New Hardware

Here we briefly summarize the steps required to add support for a new hardware platform or peripheral to the toolflow.

Adding a New Platform

Depending on the level of support required, adding a new hardware platform to the toolflow is actually quite straight-
forward.

Adding a Platform to the Toolflow Frontend

First, a Platform Block for the new platform needs to be added to the xps_library Simulink blockset. This library
can be found in the toolflow repository at xps_library/xps_library.slx. However, to aid version control,
this library is automatically generated from the model files in xps_library/xps_models, each of which contains
one library block.

Platform blocks live in xps_library/xps_models/Platforms – it is suggested that new platforms are added
by copying one of these models to a new file, whose name reflects the new platform being added.

4.2. Documentation 131

CASPER Toolflow, Release 0.1

Once the new model file has been created, open it in Simulink, and modify the mask parameters of the block as
appropriate. Probably, this means removing and clock sources which aren’t valid for your platform, and/or hardcod-
ing/parameterizing the allowed clock rates the user may enter.

Your platform yellow block should have an initialization function which looks for a Xilinx System Generator
block in your design and configures it appropriately. For example, the SNAP-board initialization function is
xps_xsg_snap_conf_mask.m, and contains:

if ~strcmp(bdroot, 'xps_library')
sysgen_blk = find_system(gcs, 'SearchDepth', 1,'FollowLinks','on','LookUnderMasks

→˓','all','Tag','genX');
if length(sysgen_blk) == 1

xsg_blk = sysgen_blk{1};
else

error('XPS block must be on the same level as the Xilinx SysGen block');
end

[hw_sys, hw_subsys] = xps_get_hw_plat(get_param(gcb,'hw_sys'));
clk_src = get_param(gcb, 'clk_src');
%clk_src = get_param(gcb, [hw_sys, '_clk_src']);
syn_tool = get_param(gcb, 'synthesis_tool');

%set_param(gcb, 'clk_src', clk_src);

ngc_config.include_clockwrapper = 1;
ngc_config.include_cf = 0;

xlsetparam(xsg_blk,'xilinxfamily', 'Kintex7',...
'part', hw_subsys,...
'speed', '-2',...
'testbench', 'off',...
'package', 'ffg676');

xlsetparam(xsg_blk,...
'sysclk_period', num2str(1000/clk_rate),...
'synthesis_language', 'VHDL');

if strcmp(syn_tool, 'Leonardo Spectrum')
xlsetparam(xsg_blk, 'synthesis_tool', 'Spectrum');

else
xlsetparam(xsg_blk, 'synthesis_tool', syn_tool)

end

xlsetparam(xsg_blk,'clock_loc','d7hack')
end

You should create your own initialization function in xps_library/ and point your block to use it. At a minimum,
it should appropriately set the xilinxfamily, part, speed and package entries of the Xilinx System Generator
block via a command similar to:

xlsetparam(xsg_blk,'xilinxfamily', 'Kintex7',...
'part', hw_subsys,...
'speed', '-2',...
'testbench', 'off',...
'package', 'ffg676');

You may have to manually open a Xilinx System Generator block to figure out what the correct xilinxfamily
specification is for your FPGA. If you wish, you can place design rule checking (eg. maximum / minimum allowed

132 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

clock rates) within this initialization function.

Once you have added and saved your new platform block, you can include it in xps_library.slx by regenerating
the library with the MATLAB command xps_build_new_library.

Adding a Platform to the Toolflow Middleware

The new platform block needs to be backed up with support from the toolflow middleware.

First, a platform YAML file needs to be added to jasper_library/platforms/ meeting the spec explained
earlier.

Second, a platform yellow block python class is required. The class name should match your platform name (lower
case), and the class should be stored in the file jasper_library/yellow_blocks/<platform>.py.

The YellowBlock class for the SNAP board is:

from yellow_block import YellowBlock
from constraints import ClockConstraint, PortConstraint, RawConstraint

class snap(YellowBlock):
def initialize(self):

self.add_source('infrastructure')
self.add_source('wbs_arbiter')
32-bit addressing => second half of 32 MByte memory. See UG470 v1.11 Table

→˓7.2, Note 1
self.usermemaddr = 0x800000 >> 8
self.golden = False

def modify_top(self,top):
inst = top.get_instance('snap_infrastructure', 'snap_infrastructure_inst')
inst.add_port('sys_clk_buf_n', 'sys_clk_n', parent_port=True, dir='in')
inst.add_port('sys_clk_buf_p', 'sys_clk_p', parent_port=True, dir='in')
inst.add_port('sys_clk0 ', 'sys_clk ')
inst.add_port('sys_clk180 ', 'sys_clk180')
inst.add_port('sys_clk270 ', 'sys_clk270')
inst.add_port('clk_200 ', 'clk_200 ')
inst.add_port('sys_rst ', 'sys_rst ')
inst.add_port('idelay_rdy ', 'idelay_rdy')

top.add_signal('sys_clk90')
top.assign_signal('sys_clk90', '~sys_clk270')

def gen_children(self):
children = [YellowBlock.make_block({'tag':'xps:sys_block', 'board_id':'12',

→˓'rev_maj':'12', 'rev_min':'0', 'rev_rcs':'32'}, self.platform)]
if self.use_microblaze:

children.append(YellowBlock.make_block({'tag':'xps:microblaze'}, self.
→˓platform))

else:
children.append(YellowBlock.make_block({'tag':'xps:spi_wb_bridge'}, self.

→˓platform))
XADC is embedded in the microblaze core, so don't include another one

→˓unless we're not microblazin'
children.append(YellowBlock.make_block({'tag':'xps:xadc'}, self.platform))

return children

def gen_constraints(self):

(continues on next page)

4.2. Documentation 133

CASPER Toolflow, Release 0.1

(continued from previous page)

cons =[
PortConstraint('sys_clk_n', 'sys_clk_n'),
PortConstraint('sys_clk_p', 'sys_clk_p'),
ClockConstraint('sys_clk_p', period=5.0),
RawConstraint('set_property CONFIG_VOLTAGE 2.5 [current_design]'),
RawConstraint('set_property CFGBVS VCCO [current_design]'),
RawConstraint('set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_

→˓design]'),
RawConstraint('set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_

→˓design]'),
RawConstraint('set_property BITSTREAM.CONFIG.SPI_32BIT_ADDR Yes [current_

→˓design]'),
RawConstraint('set_property BITSTREAM.CONFIG.TIMER_CFG 2000000 [current_

→˓design]'), # about 10 seconds
]
if self.golden:

#cons += [RawConstraint('set_property BITSTREAM.CONFIG.NEXT_CONFIG_ADDR 0x
→˓%.7x [current_design]' % self.usermemaddr),]

pass
else:

cons += [RawConstraint('set_property BITSTREAM.CONFIG.CONFIGFALLBACK
→˓ENABLE [current_design]'),]

return cons

def gen_tcl_cmds(self):
tcl_cmds = {}
After generating bitstream write PROM file
Write both mcs and bin files. The latter are good for remote programming

→˓via microblaze. And makes sure the
microblaze code makes it into top.bin, and hence top.bof
tcl_cmds['promgen'] = []
tcl_cmds['promgen'] += ['write_cfgmem -format mcs -size 32 -interface SPIx4 -

→˓loadbit "up 0x0 ./myproj.runs/impl_1/top.bit " -checksum -file "./myproj.runs/impl_
→˓1/top.mcs" -force']

tcl_cmds['promgen'] += ['write_cfgmem -format mcs -size 32 -interface SPIx4 -
→˓loadbit "up 0x%.7x ./myproj.runs/impl_1/top.bit " -checksum -file "./myproj.runs/
→˓impl_1/top_0x%x.mcs" -force' % (self.usermemaddr, self.usermemaddr)]

tcl_cmds['promgen'] += ['write_cfgmem -format bin -size 32 -interface SPIx4 -
→˓loadbit "up 0x0 ./myproj.runs/impl_1/top.bit " -checksum -file "./myproj.runs/impl_
→˓1/top.bin" -force']

return tcl_cmds

This class instantiates a snap_infrastructure module in a design’s top-level verilog file (via modify_top),
and requires the source files jasper_library/hdl_sources/wbs_arbiter/* and jasper_library/
hdl_sources/infrastructure/* (via initialize). You’ll probably want to make an infrastructure block
which is appropriate to your platform – i.e., takes in an external clock signal, and generates a buffered system clock
which other modules in a design can use.

There are a few rules which platform YellowBlock subclasses must adhere to in order not to break the toolflow:

• They should add the source wbs_arbiter (this is a silly requirement which should be mitigated)

• They should generate a buffered clock called sys_clk, and its 90/180/270 degree counterparts sysclk90,
sysclk180 and sysclk270.

• sys_clk should be 100 MHz. (This is not strictly a requirement, but other modules assume sys_clk is
relatively slow, and therefore appropriate for use in high combinatorial-logic paths)

The SNAP block attaches the external sys_clk_n and sys_clk_p ports to ports with the same names in the plat-

134 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

forms YAML file via the PortConstraint instances returned by gen_constraints. It is not necessary for the
two arguments of the PortConstraint to match – i.e., it is acceptable to connect the top-level port sys_clk_n
to the platform pin designated foo_clk – but maintaining some consistency with existing platforms is recommended
where possible.

A ClockConstraint should also be defined in gen_constraints, which appropriately sets the rate of the
clock being used to derive the 100 MHz system clock.

The SNAP example above also uses a variety of other features which may be useful for new platforms.

• RawConstraint instances are used to pass bitstream configuration information to the downstream compiler.

• An optional method gen_tcl_cmds is included, which adds tcl commands directly to the final compilation
script. In this case, these commands are used to generate a SNAP-appropriate prom file from the compiled
bitstream.

• An optional method gen_children is used to instantiate other yellow blocks in the design as if the user had
placed them in their Simulink model.

Compiling

With the above changes, you should be able to compile a design for your new platform using the toolflow!

During the development process, it is recommended that you look at the generated jasper.per and top.v files to
check how definitions in python classes and YAML configuration files are being turned into code. The Yellow Block
tutorial will probably prove helpful in further understanding the machinations of the toolflow.

Of course, you can only use yellow blocks in your design which your platform understands. Some will be automatically
supported – software registers and shared bram blocks have no top-level ports or platform-specific HDL, and so are
sompletely supported. Others can be supported by simply ensuring that your platform’s YAML configuration file has
appropriate entries for all the pins needed by a yellow block. This is the case, for example, with the spi_wb_bridge
block, which allows a design’s on-chip wishbone bus to be driven via an external SPI interface. However, most more
complex yellow blocks (Ethernet / Memory interfaces) will require some level of customization to be supported.

Adding a New Peripheral

Adding a new peripheral is well covered in the Yellow Block tutorial

4.2.3 jasper_library

castro

class castro.Castro(design_name, src_files, ips=[], mm_slaves=[], temp_fpga_model=”)
Stores complete generic structure design information

__init__(design_name, src_files, ips=[], mm_slaves=[], temp_fpga_model=”)
x.__init__(. . .) initializes x; see help(type(x)) for signature

dump(filename)
saves this class object to a yaml file

static load(filename)
loads this class object from a yaml file and assert that it is of type Castro

4.2. Documentation 135

http://casper-tutorials.readthedocs.io/en/latest/tutorials/snap/tut_gpio_bidir.html
http://casper-tutorials.readthedocs.io/en/latest/tutorials/snap/tut_gpio_bidir.html
http://casper-tutorials.readthedocs.io/en/latest/tutorials/snap/tut_gpio_bidir.html

CASPER Toolflow, Release 0.1

class castro.ClkConstraint(portname, period_ns, freq_mhz=100, clkname=None, wave-
form_min_ns=None, waveform_max_ns=None, port_en=True,
virtual_en=False)

Class to hold a clock constraint

__init__(portname, period_ns, freq_mhz=100, clkname=None, waveform_min_ns=None, wave-
form_max_ns=None, port_en=True, virtual_en=False)

x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.ClkGrpConstraint(clknamegrp1=None, clknamegrp2=None, clkdomaintype=None)
Class to hold a clock group constraint.

__init__(clknamegrp1=None, clknamegrp2=None, clkdomaintype=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.FalsePthConstraint(sourcepath=None, destpath=None)
Class to hold a false path constraint.

__init__(sourcepath=None, destpath=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.GenClkConstraint(pinname, clkname=None, divide_by=None, clksource=None)
Class to hold a generated clock constraint.

__init__(pinname, clkname=None, divide_by=None, clksource=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.InDelayConstraint(clkname=None, consttype=None, constdelay_ns=None,
add_delay_en=None, portname=None)

Class to hold an Input Delay constraint.

__init__(clkname=None, consttype=None, constdelay_ns=None, add_delay_en=None, port-
name=None)

x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.MaxDelayConstraint(sourcepath=None, destpath=None, constdelay_ns=None)
Class to hold a Max Delay constraint.

__init__(sourcepath=None, destpath=None, constdelay_ns=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.MinDelayConstraint(sourcepath=None, destpath=None, constdelay_ns=None)
Class to hold a Min Delay constraint.

__init__(sourcepath=None, destpath=None, constdelay_ns=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.MultiCycConstraint(multicycletype=None, sourcepath=None, destpath=None, mul-
ticycledelay=None)

Class to hold a multi cycle constraint.

__init__(multicycletype=None, sourcepath=None, destpath=None, multicycledelay=None)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.OutDelayConstraint(clkname=None, consttype=None, constdelay_ns=None,
add_delay_en=None, portname=None)

Class to hold an Output Delay constraint.

__init__(clkname=None, consttype=None, constdelay_ns=None, add_delay_en=None, port-
name=None)

x.__init__(. . .) initializes x; see help(type(x)) for signature

136 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

class castro.PinConstraint(portname, symbolic_name, portname_indices=None, sym-
bolic_indices=None, location=”, drive_strength=0, slew_rate=0,
io_standard=”, termination=”)

Class to hold a pin constraint

__init__(portname, symbolic_name, portname_indices=None, symbolic_indices=None, location=”,
drive_strength=0, slew_rate=0, io_standard=”, termination=”)

x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.RawConstraint(raw)
Class to hold raw constraints. These are really against the spirit of castro, since they are tool-specific. But, being
pragmatic, sometimes they are necessary to encode simple constraints, for highly technology-specific features.
The contents of these is not defined by castro.

__init__(raw)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class castro.Synthesis(platform_name=”, fpga_manufacturer=”, fpga_model=”, synth_tool=”,
pin_map=[], vendor_constraints_files=”, pin_constraints=[],
clk_constraints=[], gen_clk_constraints=[], clk_grp_constraints=[],
input_delay_constraints=[], output_delay_constraints=[],
max_delay_constraints=[], min_delay_constraints=[],
multi_cycle_constraints=[], false_path_constraints=[], raw_constraints=[],
temp_fpga_model=”, temp_quartus_qsf_files=[])

A class to specify all the synthesis specific attributes of the design

__init__(platform_name=”, fpga_manufacturer=”, fpga_model=”, synth_tool=”,
pin_map=[], vendor_constraints_files=”, pin_constraints=[], clk_constraints=[],
gen_clk_constraints=[], clk_grp_constraints=[], input_delay_constraints=[], out-
put_delay_constraints=[], max_delay_constraints=[], min_delay_constraints=[],
multi_cycle_constraints=[], false_path_constraints=[], raw_constraints=[],
temp_fpga_model=”, temp_quartus_qsf_files=[])

x.__init__(. . .) initializes x; see help(type(x)) for signature

resolve_constraint(constraint)
Ensure constraint targets existing platform constraints

class castro.mm_slave(name, mode, base_address, span)
JASPER: A list of elements of this class gets merged with the bitsream

__init__(name, mode, base_address, span)
x.__init__(. . .) initializes x; see help(type(x)) for signature

constraints

class constraints.ClockConstraint(signal=None, name=None, freq=None, period=None,
port_en=True, virtual_en=False, waveform_min=0.0,
waveform_max=None)

A clock constraint – simply holds the name of the clock signal, clock name, whether clock source is get_ports
or get_pins, whether a virtual clock, waveform parameters for duty cycle and the corresponding clock freq and
period.

This assigns the clock timing constraint on the clock port in user_const.xdc, for example:

ClockConstraint('A','A', period=6.4, port_en=True, virtual_en=False,
waveform_min=0.0, waveform_max=3.2)) is translated to create_clock -period 6.400
-name A -waveform {0.000 3.200} [get_ports {A}] in the xdc file.

This tells Vivado which ports should be clocks.

4.2. Documentation 137

CASPER Toolflow, Release 0.1

__init__(signal=None, name=None, freq=None, period=None, port_en=True, virtual_en=False,
waveform_min=0.0, waveform_max=None)

Construct a ClockConstraint instance.

Parameters

• signal (str) – The signal name of the clock port

• name (str) – The name of the clock

• freq (float) – The clock frequency in MHz (no need to specify period if the frequency
is specified)

• period (float) – The period of the clock in ns (no need to specify frequency if the
period is specified)

• port_en (boolean) – If True then the clock port is enabled. If False then the clock
port is bypassed for the case of a virtual clock.

• virtual_en (bool) – This is set to True when using a virtual clock, otherwise it is
False.

• waveform_min (float) – This parameter is used to determine the duty cycle of the
clock in ns. Typically 0ns.

• waveform_max (float) – This parameter is used to determine the duty cycle of the
clock in ns. Typically half the period of the clock for a 50% duty cycle.

class constraints.ClockGroupConstraint(clock_name_group_1=None,
clock_name_group_2=None,
clock_domain_relationship=None)

A clock group constraint – simply holds the name of both clock domains and the domain relationship e.g.
asynchronous

This assigns the clock group timing constraint on two or more clock groups in user_const.xdc, for example:

ClockGroupConstraint('A', 'B', 'asynchronous') is translated to set_clock_groups
-asynchronous -group [get_clocks A] -group [get_clocks B] in the xdc file.

This constraint is used to cut the clock relationship between two or more clock groups.

__init__(clock_name_group_1=None, clock_name_group_2=None,
clock_domain_relationship=None)

Construct a ClockGroupConstraint instance.

Parameters

• clock_name_group_1 (str) – The clock name of the first group e.g. the clock port
name or virtual clock name

• clock_name_group_2 (str) – The clock name of the second group e.g. the clock
port name or virtual clock name

• clock_domain_relationship (str) – This specifies the relationship between the
two clock name groups. Typically this is set to asynchronous which tells the Vivado
timing analyzer to ignore the timing relationship between these two clock domains, as the
clocks are asynchronous.

class constraints.FalsePathConstraint(sourcepath=None, destpath=None)
A false path constraint - simply holds the source and destination paths.

This assigns the false path timing constraint in user_const.xdc, for example:

FalsePathConstraint(destpath='[get_ports {A}]') is translated to set_false_path
-to [get_ports {A}] in the xdc file.

138 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Any path that appears in the FalsePathConstraint is ignored by the Vivado timing analyzer.

__init__(sourcepath=None, destpath=None)
Construct a FalsePathConstraint instance.

Parameters

• sourcepath (str) – The source path that the constraint is applied to - includes path
and port names.

• destpath (str) – The destination path that the constraint is applied to - includes path
and port names.

class constraints.GenClockConstraint(signal, name=None, divide_by=None,
clock_source=None)

A clock generation constraint – simply holds the name of the clock signal, clock name, clock source and divide
by value.

This assigns the generated clock timing constraint on a non global clock port in user_const.xdc, for example:

GenClockConstraint(signal='sub/Q', name='sub/CLK', divide_by=16,
clock_source='sub/C') is translated to create_generated_clock -name sub/CLK
-source [get_pins {sub/C}] -divide_by 16 [get_pins {sub/Q}] in the xdc file.

This constraint is used to assign a clock to signals that are not inferred by Vivado naturally and should be.

__init__(signal, name=None, divide_by=None, clock_source=None)
Construct a GenClockConstraint instance.

Parameters

• signal (str) – The signal name that is required to be a clock

• name (str) – The name of the generated clock

• divide_by (int) – The value to divide the clock_source by in order to determine the
clock frequency of the generated clock in MHz

• clock_source (str) – This is the clock source (input) of the generated clock. The
clock_source and the divide_by value determined the generated clock out frequency in
MHz: generated clock in MHz = clock_source*divide_by

class constraints.InputDelayConstraint(clkname=None, consttype=None, constde-
lay_ns=None, add_delay_en=None, port-
name=None)

An input delay constraint - simply holds the name of the reference clock, constraint type (min or max), constraint
delay value (ns), whether an existing constraint exists and a new one needs to be added and the port name that
the constraint applies to.

This assigns the clock input delay timing constraint in user_const.xdc, for example:
InputDelayConstraint(clkname='A', consttype='min', constdelay_ns=1.
0, add_delay_en=True, portname='B') is translated to set_input_delay -clock
[get_clocks A] -min -add_delay 1.000 [get_ports {B}] in the xdc file.

This constraint is used to assign input constraints referenced to the clock.

__init__(clkname=None, consttype=None, constdelay_ns=None, add_delay_en=None, port-
name=None)

Construct a InputDelayConstraint instance.

Parameters

• clkname (str) – The clock name which the port name is referenced to

• consttype (str) – This is constraint type: either be a min (hold) or max (setup).

4.2. Documentation 139

CASPER Toolflow, Release 0.1

• constdelay_ns (float) – This is the constraint delay in ns - takes into account the
Tco, clock skew and board delay.

• add_delay_en (bool) – If more than one constraint is needed on the portname then
this is True, else set it to False.

• portname (str) – The port name of the signal that needs to be constrained.

class constraints.MaxDelayConstraint(sourcepath=None, destpath=None, constde-
lay_ns=None)

A set max delay constraint - simply holds the source, destination paths and the constraint delay value (ns).

This assigns the max delay timing constraint in user_const.xdc, for example:
MaxDelayConstraint(destpath='[get_ports {A}]', constdelay_ns=1.0) is trans-
lated to set_max_delay 1.0 -to [get_ports {A}] in the xdc file.

This constraint is used when there is no clock reference.

__init__(sourcepath=None, destpath=None, constdelay_ns=None)
Construct a MaxDelayConstraint instance.

Parameters

• sourcepath (str) – The source path that the constraint is applied to - includes path
and port names.

• destpath (str) – The destination path that the constraint is applied to - includes path
and port names.

• constdelay_ns (float) – This is the constraint delay in ns - takes into account the
Tsu, clock skew and board delay.

class constraints.MinDelayConstraint(sourcepath=None, destpath=None, constde-
lay_ns=None)

A set min delay constraint - simply holds the source, destination paths and the constraint delay value (ns).

This assigns the min delay timing constraint in user_const.xdc, for example:

MinDelayConstraint(destpath='[get_ports {A}]', constdelay_ns=1.0) is translated
to set_min_delay 1.0 -to [get_ports {A}] in the xdc file.

This constraint is used when there is no clock reference.

__init__(sourcepath=None, destpath=None, constdelay_ns=None)
Construct a MinDelayConstraint instance.

Parameters

• sourcepath (str) – The source path that the constraint is applied to - includes path
and port names.

• destpath (str) – The destination path that the constraint is applied to - includes path
and port names.

• constdelay_ns (float) – This is the constraint delay in ns - takes into account the
Th, clock skew and board delay.

class constraints.MultiCycleConstraint(multicycletype=None, sourcepath=None, dest-
path=None, multicycledelay=None)

A multi cycle constraint - simply holds the multi cycle type (steup or hold), source, destination paths and multi
cycle delay value in clock cycles.

This assigns the multicycle timing constraint in user_const.xdc, for example:

140 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

MultiCycleConstraint(multicycletype='setup',sourcepath='get_clocks B',
destpath='get_ports A', multicycledelay=4) is translated to set_multicycle_path
-setup -from [get_ports A] -to [get_clocks B] 4 in the xdc file.

This tells the Vivado timing analyzer that the signal will take more than one clock cycle to propagate through
the logic.

__init__(multicycletype=None, sourcepath=None, destpath=None, multicycledelay=None)
Construct a MultiCycleConstraint instance.

Parameters

• multicycletype (str) – The type of multicycle constraint: either setup or hold

• sourcepath (str) – The source path that the constraint is applied to - includes path
and port names.

• destpath (str) – The destination path that the constraint is applied to - includes path
and port names.

• multicycledelay (int) – This represents the number of clock cycles to delay.

class constraints.OutputDelayConstraint(clkname=None, consttype=None, constde-
lay_ns=None, add_delay_en=None, port-
name=None)

An output delay constraint - simply holds the name of the reference clock, constraint type (min or max), con-
straint delay value (ns), whether an existing constraint exists and a new one needs to be added and the port name
that the constraint applies to.

This assigns the clock output delay timing constraint in user_const.xdc, for example:

OutputDelayConstraint(clkname='A', consttype='min', constdelay_ns=1.
0, add_delay_en=True, portname='B') is translated to set_output_delay -clock
[get_clocks A] -min -add_delay 1.000 [get_ports {B}] in the xdc file.

This constraint is used to assign output constraints referenced to the clock.

__init__(clkname=None, consttype=None, constdelay_ns=None, add_delay_en=None, port-
name=None)

Construct a OutputDelayConstraint instance.

Parameters

• clkname (str) – The clock name which the port name is referenced to

• consttype (str) – This is constraint type: either be a min (hold) or max (setup).

• constdelay_ns (float) – This is the constraint delay in ns - takes into account the
Tsu, Th, clock skew and board delay.

• add_delay_en (bool) – If more than one constraint is needed on the portname then
this is True, else set it to False.

• portname (str) – The port name of the signal that needs to be constrained.

class constraints.PortConstraint(portname, iogroup, port_index=[], iogroup_index=[0],
loc=None, iostd=None)

A class to facilitate constructing abstracted port constraints.

Eg, adc_data[7:0] <=> zdok0[7:0] which can later be translated into physical constraints by providing informa-
tion about a target platform.

This assigns the port LOC and voltage constraints to user_const.xdc, for example:

PortConstraint('A', 'A') is translated to set_property PACKAGE_PIN BC27
[get_ports A] and set_property IOSTANDARD LVCMOS18 [A] in the xdc file. The “BC27”

4.2. Documentation 141

CASPER Toolflow, Release 0.1

LOC and “LVCMOS18” is determined by the platform yaml file, which contains all the platform top level ports
and LOC assignments.

__init__(portname, iogroup, port_index=[], iogroup_index=[0], loc=None, iostd=None)
Construct a PortConstraint instance.

Parameters

• portname (str) – The name (in verilog) of the port

• port_index (int) – Specify an offset of the port index to attach to iogroup[index].
This feature was added so that we can do (eg.) myport[3:0] <=> gpioA[3:0], myport[7:4]
<=> gpioB[3:0]

• iogroup (str) – The abstract name of the ports physical connection (eg. zdok0, zdok1,
gpioa)

• iogroup_index (int or list) – The index of the abstract name to which the HDL
port should connect

• loc (list) – Specify a loc to construct a physical constraint, forgoing the abstract names.
Experimental.

• iostd – Specify an iostd to construct a physical constraint, forgoing the abstract names.
Experimental.

gen_physical_const(platform)
Set the LOC and IOSTDs of an abstract constraint for a given platform.

Parameters platform (Platform) – The platform instance against which to evaluate the
constraint(s).

class constraints.RawConstraint(const)
A class for raw constraints – strings to be dumper unadulterated into a constraint file.

This assigns any raw constraints (set_property, pblock etc) in user_const.xdc, for example:

RawConstraint('set_property OFFCHIP_TERM NONE [get_ports A]') is translated to
set_property OFFCHIP_TERM NONE [get_ports A] in the xdc file.

Any constraint not handled in the above classes can be added using the raw constraints.

__init__(const)
Construct a RawConstraint instance.

Parameters const (str) – This represents the path with port names that the constraint is
applied to

exec_flow

exec_flow.shell_source(script)
Sometime you want to emulate the action of “source” in bash, settings some environment variables. Here is a
way to do it.

helpers

helpers.to_int_list(s)
take a string like [0,1,2,3] and return a list of integers

helpers.write_file(fn, str)
write string str to filename fn

142 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

memory

class memory.Register(name, nbytes=4, offset=0, mode=’r’, default_val=0, ram=False, ram_size=-1,
data_width=32)

__init__(name, nbytes=4, offset=0, mode=’r’, default_val=0, ram=False, ram_size=-1,
data_width=32)

A class to encapsulate a register’s parameters. This is used when instantiating a device with a large address
space, but it is desirable to be able to address sub-spaces of this memory with separate names.

For example (see sys_block.py):

class sys_block(YellowBlock):
def initialize(self):

self.typecode = TYPECODE_SYSBLOCK
self.add_source('sys_block')
the internal memory_map
self.memory_map = [

Register('sys_board_id', mode='r', offset=0),
Register('sys_rev', mode='r', offset=0x4),
Register('sys_rev_rcs', mode='r', offset=0xc),
Register('sys_scratchpad', mode='rw', offset=0x10),
Register('sys_clkcounter', mode='r', offset=0x14),

]
def modify_top(self,top):

inst = top.get_instance('sys_block', 'sys_block_inst')
inst.add_parameter('BOARD_ID', self.board_id)
inst.add_parameter('REV_MAJ', self.rev_maj)
inst.add_parameter('REV_MIN', self.rev_min)
inst.add_parameter('REV_RCS', self.rev_rcs)
inst.add_port('user_clk', 'user_clk')
inst.add_wb_interface('sys_block', mode='r', nbytes=64, memory_

→˓map=self.memory_map, typecode=self.typecode)

Parameters

• name (String) – The name of this register

• nbytes (Integer) – Number of bytes this register occupies

• offset (Integer) – Location, in bytes, where this register resides in memory, relative
to the base address of the device.

• mode (String) – Read/write permission for this register. ‘r’ (readable), ‘w’ (writable),
‘rw’ (read/writable)

• default_val (Integer) – Default value for register to be reset to and initialized.

platform

This module tries to retrieve as much platform-identifying data as possible. It makes this information available via
function APIs.

If called from the command line, it prints the platform information concatenated as single string to stdout. The output
format is useable as part of a filename.

platform.architecture(executable=’/home/docs/checkouts/readthedocs.org/user_builds/casper-
toolflow/envs/stable/bin/python’, bits=”, linkage=”)

Queries the given executable (defaults to the Python interpreter binary) for various architecture information.

4.2. Documentation 143

CASPER Toolflow, Release 0.1

Returns a tuple (bits,linkage) which contains information about the bit architecture and the linkage format used
for the executable. Both values are returned as strings.

Values that cannot be determined are returned as given by the parameter presets. If bits is given as ‘’, the
sizeof(pointer) (or sizeof(long) on Python version < 1.5.2) is used as indicator for the supported pointer size.

The function relies on the system’s “file” command to do the actual work. This is available on most if not all
Unix platforms. On some non-Unix platforms where the “file” command does not exist and the executable is set
to the Python interpreter binary defaults from _default_architecture are used.

platform.dist(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’, ’fedora’, ’redhat’,
’centos’, ’mandrake’, ’mandriva’, ’rocks’, ’slackware’, ’yellowdog’, ’gentoo’, ’Unit-
edLinux’, ’turbolinux’))

Tries to determine the name of the Linux OS distribution name.

The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no
suitable files are found.

Returns a tuple (distname,version,id) which default to the args given as parameters.

platform.java_ver(release=”, vendor=”, vminfo=(”, ”, ”), osinfo=(”, ”, ”))
Version interface for Jython.

Returns a tuple (release,vendor,vminfo,osinfo) with vminfo being a tuple (vm_name,vm_release,vm_vendor)
and osinfo being a tuple (os_name,os_version,os_arch).

Values which cannot be determined are set to the defaults given as parameters (which all default to ‘’).

platform.libc_ver(executable=’/home/docs/checkouts/readthedocs.org/user_builds/casper-
toolflow/envs/stable/bin/python’, lib=”, version=”, chunksize=2048)

Tries to determine the libc version that the file executable (which defaults to the Python interpreter) is linked
against.

Returns a tuple of strings (lib,version) which default to the given parameters in case the lookup fails.

Note that the function has intimate knowledge of how different libc versions add symbols to the executable and
thus is probably only useable for executables compiled using gcc.

The file is read and scanned in chunks of chunksize bytes.

platform.linux_distribution(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’,
’fedora’, ’redhat’, ’centos’, ’mandrake’, ’mandriva’, ’rocks’,
’slackware’, ’yellowdog’, ’gentoo’, ’UnitedLinux’, ’turbolinux’),
full_distribution_name=1)

Tries to determine the name of the Linux OS distribution name.

The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no
suitable files are found.

supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list of currently
supported Linux distributions identified by their release file name.

If full_distribution_name is true (default), the full distribution read from the OS is returned. Otherwise the short
name taken from supported_dists is used.

Returns a tuple (distname,version,id) which default to the args given as parameters.

platform.mac_ver(release=”, versioninfo=(”, ”, ”), machine=”)
Get MacOS version information and return it as tuple (release, versioninfo, machine) with versioninfo being a
tuple (version, dev_stage, non_release_version).

Entries which cannot be determined are set to the parameter values which default to ‘’. All tuple entries are
strings.

144 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

platform.machine()
Returns the machine type, e.g. ‘i386’

An empty string is returned if the value cannot be determined.

platform.node()
Returns the computer’s network name (which may not be fully qualified)

An empty string is returned if the value cannot be determined.

platform.platform(aliased=0, terse=0)
Returns a single string identifying the underlying platform with as much useful information as possible (but no
more :).

The output is intended to be human readable rather than machine parseable. It may look different on different
platforms and this is intended.

If “aliased” is true, the function will use aliases for various platforms that report system names which differ from
their common names, e.g. SunOS will be reported as Solaris. The system_alias() function is used to implement
this.

Setting terse to true causes the function to return only the absolute minimum information needed to identify the
platform.

platform.popen(cmd, mode=’r’, bufsize=None)
Portable popen() interface.

platform.processor()
Returns the (true) processor name, e.g. ‘amdk6’

An empty string is returned if the value cannot be determined. Note that many platforms do not provide this
information or simply return the same value as for machine(), e.g. NetBSD does this.

platform.python_branch()
Returns a string identifying the Python implementation branch.

For CPython this is the Subversion branch from which the Python binary was built.

If not available, an empty string is returned.

platform.python_build()
Returns a tuple (buildno, builddate) stating the Python build number and date as strings.

platform.python_compiler()
Returns a string identifying the compiler used for compiling Python.

platform.python_implementation()
Returns a string identifying the Python implementation.

Currently, the following implementations are identified: ‘CPython’ (C implementation of Python), ‘Iron-
Python’ (.NET implementation of Python), ‘Jython’ (Java implementation of Python), ‘PyPy’ (Python
implementation of Python).

platform.python_revision()
Returns a string identifying the Python implementation revision.

For CPython this is the Subversion revision from which the Python binary was built.

If not available, an empty string is returned.

platform.python_version()
Returns the Python version as string ‘major.minor.patchlevel’

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults to 0).

4.2. Documentation 145

CASPER Toolflow, Release 0.1

platform.python_version_tuple()
Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults to 0).

platform.release()
Returns the system’s release, e.g. ‘2.2.0’ or ‘NT’

An empty string is returned if the value cannot be determined.

platform.system()
Returns the system/OS name, e.g. ‘Linux’, ‘Windows’ or ‘Java’.

An empty string is returned if the value cannot be determined.

platform.system_alias(system, release, version)
Returns (system,release,version) aliased to common marketing names used for some systems.

It also does some reordering of the information in some cases where it would otherwise cause confusion.

platform.uname()
Fairly portable uname interface. Returns a tuple of strings (system,node,release,version,machine,processor)
identifying the underlying platform.

Note that unlike the os.uname function this also returns possible processor information as an additional tuple
entry.

Entries which cannot be determined are set to ‘’.

platform.version()
Returns the system’s release version, e.g. ‘#3 on degas’

An empty string is returned if the value cannot be determined.

platform.win32_ver(release=”, version=”, csd=”, ptype=”)

toolflow

A python-based toolflow to build a vivado project from a simulink design, using the CASPER xps library.

A work in progress.

class toolflow.ISEBackend(plat=None, compile_dir=’/tmp’)

__init__(plat=None, compile_dir=’/tmp’)

Parameters

• plat –

• compile_dir –

add_compile_cmds(cores=8, plat=None)
add the tcl commands for compiling the design, and then launch vivado in batch mode

compile(cores, plat)

static format_clock_const(c)

static format_const(attribute, val, port, index=None)
Generate a tcl syntax command from an attribute, value and port (with indexing if required)

146 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

gen_constraint_file(constraints)
Pass this method a toolflow-standard list of constraints which have already had their physical parameters
calculated and it will generate a contstraint file and add it to the current project.

get_ucf_const(const)
Pass a single toolflow-standard PortConstraint, and get back a tcl command to add the constraint to a
vivado project.

class toolflow.SimulinkFrontend(compile_dir=’/tmp’, target=’/tmp/test.slx’)

__init__(compile_dir=’/tmp’, target=’/tmp/test.slx’)

Parameters

• compile_dir –

• target –

compile_user_ip(update=False)
Compile the users simulink design. The resulting netlist should end up in the location already specified in
the peripherals file.

Parameters update (bool) – Update the simulink model before running system generator

gen_periph_file(fname=’jasper.per’)
generate the peripheral file.

i.e., the list of yellow blocks and their parameters.

It also generates the design_info.tab file which is used to populate the fpg file header

Parameters fname (str) – The full path and name to give the peripheral file.

write_git_info_file(fname=’git_info.tab’)
Get the git info for mlib_devel and the model file. :param fname: :return:

class toolflow.Toolflow(frontend=’simulink’, compile_dir=’/tmp’, frontend_target=’/tmp/test.slx’,
jobs=8)

A class embodying the main functionality of the toolflow. This class is responsible for generating a complete
top-level verilog description of a project from a ‘peripherals file’ which encodes information about which IP a
user wants instantiated.

The toolflow class can parse such a file, and use it to generate verilog, a list of source files, and a list of
constraints. These can be passed off to a toolflow backend to be turned into some vendor-specific platform and
compiled. At least, that’s the plan. . .

__init__(frontend=’simulink’, compile_dir=’/tmp’, frontend_target=’/tmp/test.slx’, jobs=8)
Initialize the toolflow.

Parameters

• frontend (str) – Name of the toolflow frontend to use. Currently only simulink is
supported

• compile_dir – Compile directory where build files and logs should go.

build_top()
Copies the base top-level verilog file (which is platform dependent) to the compile directory. Constructs
an associated VerilogModule instance ready to be modified.

check_attr_exists(thing, generator)
Lots of methods in this class require that certain attributes have been set by other methods before proceed-
ing. This is probably a symptom of the code being terribly structured. This method checks if an attribute

4.2. Documentation 147

CASPER Toolflow, Release 0.1

exists and throws an error message if not. In principle it could automatically run the necessary missing
steps, but that seems pretty suspect.

Parameters

• thing (str) – Attribute to check.

• generator (str) – Method which can be used to set thing (used for error message
only)

constraints_rule_check()
Check pin constraints against top level signals. Warn about missing constraints.

dump_castro(filename)
Build a ‘standard’ Castro object, which is the interface between the toolflow and the backends.

exec_flow(gen_per=True, frontend_compile=True)
Execute a compile.

Parameters

• gen_per (bool) – Have the toolflow frontend generate a fresh peripherals file

• frontend_compile (bool) – Run the frontend compiler (eg. System Generator)

gen_periph_objs()
Generate a list of yellow blocks from the current peripheral file.

Internally, calls:

• _parse_periph_file: parses .per file

• _extract_plat_info: instantiates platform instance

Then calls each yellow block’s constructor. Runs a system-wide drc before returning.

generate_consts()
Compose a list of constraints from each yellow block. Use platform information to generate the appropriate
physical realisation of each constraint.

generate_hdl()
Generates a top file for the target platform based on the peripherals file.

Internally, calls:

• instantiate_periphs: call each yellow block’s mod_top method

• instantiate_user_ip: add ports to top module based on port entries in peripheral file

• regenerate_top: rewrite top.v

generate_xml_ic(memory_map)
Generate xml interconnect file that represent top-level AXI4-Lite interconnect for Oxford’s xml2vhdl.

generate_xml_memory_map(memory_map)
Generate xml memory map files that represent each AXI4-Lite interface for Oxford’s xml2vhdl.

regenerate_top()
Generate the verilog for the modified top module. This involves computing the wishbone interconnect /
addressing and generating new code for yellow block instances.

write_core_info()

write_core_jam_info()

148 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

xml2vhdl()
Function to call Oxford’s python code to generate AXI4-Lite VHDL register interfaces from an XML
memory map specification.

Obtained from: https://bitbucket.org/ricch/xml2vhdl/src/master/

class toolflow.ToolflowBackend(plat=None, compile_dir=’/tmp’)

__init__(plat=None, compile_dir=’/tmp’)

Parameters

• plat –

• compile_dir –

add_const_file(constfile)
Add a constraint file to the project. via a tcl incantation. In non-project mode, it is important to note that
copies are not made of files. The files are read from their source directory. Project mode copies files from
their source directory and adds them to the a new compile directory.

Parameters constfile –

add_source(source, plat)
Add a sourcefile to the project. Via a tcl incantation. In non-project mode, it is important to note that
copies are not made of files. The files are read from their source directory. Project mode copies files from
their source directory and adds them to the a new compile directory.

static calculate_checksum_using_bitstream(bitstream, packet_size=8192)
Summing up all the words in the input bitstream, and returning a Checksum - Assuming that the bitstream
HAS NOT been padded yet

Parameters

• bitstream – The actual bitstream of the file in question

• packet_size – max size of image packets that we pad to

Returns checksum

compile(core, plat)

Parameters

• core –

• plat –

gen_constraint_file(constraints)
Pass this method a toolflow-standard list of constraints which have already had their physical parameters
calculated and it will generate a constraint file and add it to the current project.

import_from_castro(filename)

initialize(plat)

Parameters plat –

mkfpg(filename_bin, filename_fpg)
This function makes the fpg file header and the final fpg file, which consists of the fpg file header
(core_info.tab, design_info.tab and git_info.tab) and the compressed binary file. The fpg file is used to
configure the ROACH, ROACH2, MKDIG and SKARAB boards.

Parameters

4.2. Documentation 149

https://bitbucket.org/ricch/xml2vhdl/src/master/

CASPER Toolflow, Release 0.1

• filename_bin (str) – This is the path and binary file (top.bin) that contains the FPGA
programming data.

• filename_fpg (str) – This is the output time stamped fpg file name

class toolflow.ToolflowFrontend(compile_dir=’/tmp’, target=’/tmp/test.slx’)

__init__(compile_dir=’/tmp’, target=’/tmp/test.slx’)

Parameters

• compile_dir –

• target –

compile_user_ip()
Compile the user IP to a single HDL module.

Return the name of this module.

Should be overridden by each FrontEnd subclass.

gen_periph_file(fname=’jasper.per’)
Call upon the frontend to generate a jasper-standard file defining peripherals (yellow blocks) present in a
model.

This method should be overridden by the specific frontend of choice, and should return the full path to the
peripheral file.

Use skip = True to just return the name of the file, without bothering to regenerate it (useful for
debugging, and future use cases where a user only wants to run certain steps of a compile)

write_git_info_file(fname=’git_info.tab’)
Call upon the frontend to generate a git info file, which contains the git repo information, which is used
for the header for the fpg file. This function is overwritten by the SimulinkFrontEnd Class

class toolflow.VivadoBackend(plat=None, compile_dir=’/tmp’, periph_objs=None)

__init__(plat=None, compile_dir=’/tmp’, periph_objs=None)

Parameters

• plat –

• compile_dir –

• periph_objs –

add_compile_cmds(cores=8, plat=None, synth_strat=None, impl_strat=None)
Add the tcl commands for compiling the design, and then launch vivado in batch mode

add_const_file(constfile)
Add a constraint file to the project. via a tcl incantation. In non-project mode, it is important to note that
copies are not made of files. The files are read from their source directory. Project mode copies files from
their source directory and adds them to the a new compile directory.

Parameters constfile –

add_ip(ip)
Add an ip core from a library

add_library(path)
Add a library at <path>

150 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

add_source(source, plat)
Add a sourcefile to the project. Via a tcl incantation. In non-project mode, it is important to note that
copies are not made of files. The files are read from their source directory. Project mode copies files from
their source directory and adds them to the a new compile directory.

add_tcl_cmd(cmd, stage=’pre_synth’)
Add a command to the tcl command list with a trailing newline.

compile(cores, plat, synth_strat=None, impl_strat=None)

Parameters

• cores –

• plat –

• impl_strat – Implementation Strategy to use when carrying out the implementation
run ‘impl’

eval_tcl()

static format_cfg_const(attribute, val)
Generate a configuration tcl syntax command from an attribute and value

static format_clock_const(c)

static format_clock_group_const(c)

static format_const(attribute, val, port, index=None)
Generate a tcl syntax command from an attribute, value and port (with indexing if required)

static format_false_path_const(c)

static format_gen_clock_const(c)

static format_input_delay_const(c)

static format_max_delay_const(c)

static format_min_delay_const(c)

static format_multi_cycle_const(c)

static format_output_delay_const(c)

gen_add_compile_dir_source_tcl_cmds()
Run each blocks add_compile_dir_source functions and add them to the projects sources

gen_constraint_file(constraints)
Pass this method a toolflow-standard list of constraints which have already had their physical parameters
calculated and it will generate a constraint file and add it to the current project.

gen_yellowblock_custom_hdl()
Create each yellowblock’s custom hdl files and add them to the projects sources

gen_yellowblock_tcl_cmds()
Compose a list of tcl commands from each yellow block. To be added to the final tcl script.

get_tcl_const(const)
Pass a single toolflow-standard PortConstraint, and get back a tcl command to add the constraint to a
vivado project.

initialize(plat)

Parameters plat –

4.2. Documentation 151

CASPER Toolflow, Release 0.1

verilog

Lots of code in this file could be shared between methods and the VerilogInstance/Module classes. Maybe distill at
some point.

class verilog.AXI4LiteDevice(regname, nbytes, mode, hdl_suffix=”, hdl_candr_suffix=”, mem-
ory_map=[], typecode=255, data_width=32)

A class to encapsulate the parameters (name, size, etc.) of a AXI4-Lite slave device.

__init__(regname, nbytes, mode, hdl_suffix=”, hdl_candr_suffix=”, memory_map=[], typecode=255,
data_width=32)

Class constructor.

Parameters

• regname (String) – Name of register (this name is the string used to access the register
from software)

• nbytes (Integer) – Number of bytes in this slave’s memory space.

• mode (String) – Permissions (‘r’: readable, ‘w’: writable, ‘rw’: read/writeable)

• hdl_suffix (String) – Suffix given to wishbone port names. Eg. if hdl_suffix = foo,
ports have the form wbs_dat_i_foo

• hdl_candr_suffix (String) – Suffix given to wishbone clock and reset port names.
Eg. if hdl_suffix = foo, ports have the form wbs_clk_i_foo

• memory_map (list) – A list or Register instances defining the contents of sub-blocks
of this device’s memory.

• typecode (Integer) – Typecode number (0-255) identifying the type of this block.
See yellow_block_typecodes.py

• data_width (Integer) – Width of the data to be stored in this device

base_addr = None
Start (lowest) address of the memory space used by this device, in bytes.

high_addr = None
End (highest) address of the memory space used by this device, in bytes.

class verilog.ImmutableWithComments
A class which you can add attributes to, but you can’t change them once they’re set. You are allowed to try and
set them to the same value again. The comment attribute is special. Each time you try to set it, the comment
string is appended to the existing comment attribute.

__init__()
x.__init__(. . .) initializes x; see help(type(x)) for signature

class verilog.Parameter(name, value, comment=None)
A simple class to hold parameter attributes. It is immutable, and will throw an error if its attributes are changed
after being set.

__init__(name, value, comment=None)
Create a Parameter instance.

Parameters

• name (str) – Name of this parameter

• value (Varies) – Value this parameter should be set to.

• comment (str) – User-assisting comment string to attach to this parameter.

152 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

update_attrs(name, value, comment=None)
Update the attributes of this block.

Parameters

• name (str) – Name of this parameter

• value (Varies) – Value this parameter should be set to.

• comment (str) – User-assisting comment string to attach to this parameter.

class verilog.Port(name, signal=None, parent_port=False, parent_sig=True, **kwargs)
A simple class to hold port attributes. It is immutable, and will throw an error if multiple manipulation attempts
are incompatible.

__init__(name, signal=None, parent_port=False, parent_sig=True, **kwargs)
Create a Port instance.

Parameters

• name – Name of the port

• signal (str) – Signal to which this port is attached

• parent_port (bool) – When module ‘A’ instantiates the module to which this port is
attached, should this port be connected to a similar port on ‘A’.

• parent_sig (bool) – When module ‘A’ instantiates the module to which this port is
attached, should ‘A’ also instantiate a signal matching the one connected to this port.

• kwargs – Other keywords which should become attributes of this instance.

update_attrs(name, signal=None, parent_port=False, parent_sig=True, **kwargs)
Update the attributes of this block.

Parameters

• name – Name of the port

• signal (str) – Signal to which this port is attached

• parent_port (bool) – When module ‘A’ instantiates the module to which this port is
attached, should this port be connected to a similar port on ‘A’.

• parent_sig (bool) – When module ‘A’ instantiates the module to which this port is
attached, should ‘A’ also instantiate a signal matching the one connected to this port.

• kwargs – Other keywords which should become attributes of this instance.

class verilog.Signal(name, signal=”, width=0, **kwargs)
A simple class to hold signal attributes. It is immutable, and will throw an error if its attributes are changed after
being set.

__init__(name, signal=”, width=0, **kwargs)
Create a ‘Signal’ instance.

Parameters

• name (str) – Name of this signal

• signal (int) – Name of this signal

• width – Bitwidth of this signal

• kwargs – Other keywords which should become attributes of this instance.

update_attrs(name, width=0, **kwargs)

4.2. Documentation 153

CASPER Toolflow, Release 0.1

class verilog.VerilogModule(name=”, topfile=None, comment=”)
A Python object which knows how to represent itself in Verilog.

__init__(name=”, topfile=None, comment=”)
Construct a new module, named name. You can either start with an empty module and add
ports/signals/instances to it, or you can specify an existing top-level file topfile, which will be mod-
ified. If doing the latter, the construction of wishbone interconnect demands that the topfile has a
localparam N_WB_SLAVES, which specifies the number of wishbone slaves in the un-modified top-
file. And SLAVE_BASE and SLAVE_HIGH localparams definiting the slave addresses.

Eg:

localparam N_WB_SLAVES = 2;

localparam SLAVE_BASE = {
32'h00010000, // slave_1
32'h00000000 // slave_0
};

localparam SLAVE_HIGH = {
32'h00010003, // slave_1
32'hFFFFFFFF // slave_0
};

// This module will only tolerate
// i/o declarations like:

module top (
input sysclk_n,
input sysclk_p,
...
);

// I.e, NOT

module top(
sysclk_n,
sysclk_p,
...
);
input sysclk_n;
input sysclk_p;
...

// YMMV if your topfile doesn't use linebreaks as
// shown above. I.e., for best chance of success don't do

module top(sysclk_n,
sysclk_p);

localparam SLAVE_BASE = {32'h00000000};

Parameters

• name (str) – Name of this module

• topfile (str or None) – The filename of an existing verilog file, if any, to which
this module should add.

154 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

• comment (str) – A user-friendly comment to be inserted in Verilog where this module
is instantiated.

add_axi4lite_interface(regname, mode, nbytes=4, default_val=0, suffix=”, candr_suffix=”,
memory_map=[], typecode=255, data_width=32)

Add the ports necessary for a AXI4-Lite slave interface.

This function returns the AXI4LiteDevice object, so the caller can mess with it’s memory map if they so
desire.

Added the (optional) data_width parameter to make provision for variable-size BRAMs

add_localparam(name, value, comment=None)
Add a parameter to the entity, with name parameter and value value.

You may add a comment that will end up in the generated verilog.

add_parameter(name, value, comment=None)
Add a parameter to the entity, with name parameter and value value.

You may add a comment that will end up in the generated verilog.

add_port(name, signal=None, parent_port=False, parent_sig=True, **kwargs)
Add a port to the module. Only the parameter name is compulsory. Others may be required when instan-
tiating this module in another.

E.g., an instance of this module needs all ports to have a defined signal value.

However, if this module is at the top level, this isn’t necessary. Similarly, a port featuring in an instantiated
module need not have a width or direction specified, but if you want to instantiate the module and propagate
the port to the parent, the parent won’t know what to do unless these port parameters are specified.

Parameters

• name – name of the port

• signal – name of the signal to connect port to. Can include bit indexing, e.g.
my_signal[15:8]

• dir – direction of signal

• width – width of signal

• parent_port – When instantiating this module, promote this port to a port of the parent

• parent_sig – When instantiating this module, add a signal named signal to the
parent

• comment – Use this to add a comment string which will end up in the generated verilog

add_raw_string(s)

add_signal(name, width=0, **kwargs)
Add an internal signal to the entity, with name signal and width width.

You may add a comment that will end up in the generated verilog.

add_sourcefile(file)

add_wb_interface(regname, mode, nbytes=4, suffix=”, candr_suffix=”, memory_map=[], type-
code=255)

Add the ports necessary for a wishbone slave interface. Wishbone ports that depend on the slave index are
identified by a parameter that matches the instance name. This parameter must be given a value in a higher
level of the verilog code!

This function returns the WbDevice object, so the caller can mess with it’s memory map if they so desire.

4.2. Documentation 155

CASPER Toolflow, Release 0.1

assign_signal(lhs, rhs, comment=None)
Assign one signal to another, or one signal to a port.

i.e., generate lines of verilog like: assign lhs = rhs;

lhs and rhs are strings that can represent port or signal names, and may include verilog-style indexing,
eg [15:8]

You may add a comment that will end up in the generated verilog.

assign_wb_interface(name, id=0, suffix=”, candr_suffix=”, sub_arb_id=0)
Add the ports necessary for a wishbone slave interface. Wishbone ports that depend on the slave index are
identified by a parameter that matches the instance name. This parameter must be given a value in a higher
level of the verilog code!

axi4lite_memory_map(base_addr=65536, alignment=4)
This function is only to be called by the ‘top’ verilog module after all other yellow blocks have called
‘modify_top’, but before the axi4lite_interconnect yellow block class has called ‘modify_top’ as that class
requires the memory map this creates.

Parameters

• base_addr (int) – The address from which indexing of instance axi4lite interfaces
will begin. Any memory space required by the template verilog file should be below this
address.

• alignment (int) – Alignment required by all memory start addresses.

memory map: keys: name of AXI4-Lite interfaces. values:

• ‘memory_map’: internal memory map for this interface

• ‘size’: size of internal memory map in bytes

• ‘absolute_address’: actual address in memory determined by base_addr

• ‘relative_address’: address relative to base_addr

• ‘axi4lite_devices’: List of AXI4LiteDevice objects for core_info backwards compatibility

gen_assignments_ascii_art()

Returns Pretty ascii art “Assignments” string.

gen_assignments_str()
Generate the verilog code required to assign a port or signal to another signal

gen_cur_blk_comment(cur_blk, dict)
This helper function returns the current block string, if the dictionary is not empty and the current block is
not default.

gen_default_nettype_str()

gen_endmod_str()

gen_instance_verilog(instname)
Generate a string corresponding to the instantiation of this instance, with instance name instname

gen_instances_ascii_art()

Returns Pretty ascii art “Instances” string.

gen_instances_dec_str()
Generate the verilog code required to instantiate the instances in this module

156 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

gen_localparams_dec_str()
Generate the verilog code required to declare localparams

gen_mod_dec_str()
Generate the verilog code required to start a module declaration.

gen_module_file(filename=None)

gen_params_dec_str()
Generate the verilog code required to declare parameters

gen_port_list()
Generate the verilog code required to declare ports

gen_ports_dec_str()
Generate the verilog code required to declare ports with special attributes, eg LOCS, etc.

gen_signals_ascii_art()

Returns Pretty ascii art “Signals” string.

gen_signals_dec_str()
Generate the verilog code required to declare signals

gen_top_mod()
Return the code that needs to go in a top level verilog file to incorporate this module.

I.e., everything except the module port declaration headers and endmodule lines.

TODO: This is almost identical to write_new_module_file(). Combine?

get_base_wb_slaves()
Look for the pattern localparam N_WB_SLAVES in this module’s topfile, and use it to extract the
number of wishbone slaves in the module. Update the base_wb_slaves attribute accordingly. Also extract
the addresses. Names are auto-generated

get_instance(entity, name, comment=None)
Instantiate and return a new instance of entity entity, with instance name name.

You may add a comment that will end up in the generated verilog.

has_instance(name)
Check if this module has an instance called <name>. If so return True

instantiate_child_ports()
Add ports and signals associated with child instances

rewrite_module_file(filename=None)
Rewrite the intially supplied verilog file to include instance, signals, ports, assignments and wishbone
interfaces added programmatically.

The initial verilog file is backed up with a ‘.base’ extension.

search_dict_for_name(dict, name)
This helper function searches each top level dictionary to see if it contains name and returns the key that
does.

set_cur_blk(cur_blk)
Set the name of the block currently driving code generation. This is useful for grouping and commenting
the ports / instances / signals associated with particular instances, so that the output Verilog is prettier.

Parameters cur_blk (str) – The name of the current block driving code generation.

4.2. Documentation 157

CASPER Toolflow, Release 0.1

wb_compute(base_addr=65536, alignment=4)
Compute the appropriate wishbone address limits, based on the current wishbone-using instances instanti-
ated in the module.

Will NOT take into account wishbone memory space used by the template verilog file (but see base_addr,
below)

Parameters

• base_addr (int) – The address from which indexing of instance wishbone interfaces
will begin. Any memory space required by the template verilog file should be below this
address.

• alignment (int) – Alignment required by all memory start addresses.

write_new_module_file(filename=None)
Write a verilog file from scratch, based on the programmatic additions of instances / signals / etc. to the
VerilogModule instance.

The jasper toolflow has been using rewrite_module_file() rather than this method, so it may or
may not still work correctly. It used to, at least. . .

class verilog.WbDevice(regname, nbytes, mode, hdl_suffix=”, hdl_candr_suffix=”, memory_map=[],
typecode=255)

A class to encapsulate the parameters (name, size, etc.) of a wishbone slave device.

__init__(regname, nbytes, mode, hdl_suffix=”, hdl_candr_suffix=”, memory_map=[], type-
code=255)

Class constructor.

Parameters

• regname (str) – Name of register (this name is the string used to access the register
from software)

• nbytes (int) – Number of bytes in this slave’s memory space.

• mode (str) – Permissions (‘r’: readable, ‘w’: writable, ‘rw’: read/writeable)

• hdl_suffix (str) – Suffix given to wishbone port names. Eg. if hdl_suffix =
foo, ports have the form wbs_dat_i_foo

• hdl_candr_suffix (str) – Suffix given to wishbone clock and reset port names. Eg.
if hdl_suffix = foo, ports have the form wbs_clk_i_foo

• memory_map (list) – A list or Register instances defining the contents of sub-
blocks of this device’s memory.

• typecode (int) – Typecode number (0-255) identifying the type of this block. See
yellow_block_typecodes.py

base_addr = None
Start (lowest) address of the memory space used by this device, in bytes.

high_addr = None
End (highest) address of the memory space used by this device, in bytes.

sub_arb_id = None
If using multiple bus arbiters, which arbiter should this slave attach to?

verilog.gen_wbs_master_arbiter(arbiters, max_devices_per_arb=32)
Deliver a string defining the top level of a hierarchical Wishbone arbiter. This can be written to a file and then
imported into an HDL project. Ideally (maybe) this instantiation would be made via a VerilogModule class.

158 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

verilog.instantiate_wb_arb_module(module, n_slaves, n_sub_arbs=None)
Instantiate a Wishbone Arbiter into a module.

Parameters

• module (VerilogModule instance) – Module into which the arbiter should be in-
stantiated.

• n_slaves (int) – Number of slaves this arbiter is connected to.

• n_sub_arbs (int or None) – Number of sub-arbiters beneath the arbiter being in-
stantiated here. If None, a non-hierarchical arbiter will be used.

yellow_blocks

adc

class yellow_blocks.adc.adc(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

adc16

class yellow_blocks.adc16.adc16(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

4.2. Documentation 159

CASPER Toolflow, Release 0.1

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

adc20g

class yellow_blocks.adc20g.adc20g(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

adc5g

class yellow_blocks.adc5g.adc5g(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

160 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

bram

class yellow_blocks.bram.bram(blk, platform, hdl_root=None)

initialize()
This function is called by YellowBlocks __init__ method. We could override __init__ here, but this seems
a little bit more user friendly.

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

clock_passthrough

class yellow_blocks.clock_passthrough.clock_passthrough(blk, platform,
hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

dcp

class yellow_blocks.dcp.dcp(blk, platform, hdl_root=None)

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

4.2. Documentation 161

CASPER Toolflow, Release 0.1

forty_gbe

class yellow_blocks.forty_gbe.forty_gbe(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

Returns Dictionary of tcl command lists. Default {}

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

instantiate_fgbe(top, num=None)

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

gpio

class yellow_blocks.gpio.gpio(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

162 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

gpio_bidir

class yellow_blocks.gpio_bidir.gpio_bidir(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

hmc

class yellow_blocks.hmc.hmc(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

instantiate_hmcc(top, num=None)

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

4.2. Documentation 163

CASPER Toolflow, Release 0.1

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

i2c_interface

class yellow_blocks.i2c_interface.i2c_interface(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by YellowBlocks __init__ method. We could override __init__ here, but this seems
a little bit more user friendly.

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

ip

class yellow_blocks.ip.ip(blk, platform, hdl_root=None)

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

lmx2581

class yellow_blocks.lmx2581.lmx2581(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

164 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

microblaze

class yellow_blocks.microblaze.microblaze(blk, platform, hdl_root=None)

static factory(blk, plat, hdl_root=None)

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

class yellow_blocks.microblaze.microblaze_k7(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

Returns Dictionary of tcl command lists. Default {}

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.microblaze.microblaze_ku7(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

4.2. Documentation 165

CASPER Toolflow, Release 0.1

Returns A list of Constraint instances. Default is []

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

Returns Dictionary of tcl command lists. Default {}

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

onegbe

class yellow_blocks.onegbe.onegbe(blk, platform, hdl_root=None)

static factory(blk, plat, hdl_root=None)

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.onegbe.onegbe_casia_k7(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

166 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.onegbe.onegbe_snap(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.onegbe.onegbe_vcu118(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.onegbe.onegbe_vcu128(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

4.2. Documentation 167

CASPER Toolflow, Release 0.1

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

skarab

class yellow_blocks.skarab.skarab(blk, platform, hdl_root=None)

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

snap

class yellow_blocks.snap.snap(blk, platform, hdl_root=None)

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

168 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

Returns Dictionary of tcl command lists. Default {}

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

snap2

class yellow_blocks.snap2.snap2(blk, platform, hdl_root=None)

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

4.2. Documentation 169

CASPER Toolflow, Release 0.1

Returns Dictionary of tcl command lists. Default {}

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

snap_adc

class yellow_blocks.snap_adc.snap_adc(blk, platform, hdl_root=None)

gen_children()
The first instance of this adc adds the required clock controller module

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

reorder_ports(port_list, wb_bitwidth=32)
Reorder output ports of ADCs to arrange sampling data in correct order in wb_bram

wb_bitwidth stands for the bit width of data in/out port of wishbone bus

reorder_ports(['a1','a2','a3','a4'])
when self.adc_data_width == 8, return {a1,a2,a3,a4}
when self.adc_data_width == 16, return {a3,a4,a1,a2}
when self.adc_data_width == 32, return {a4,a3,a2,a1}

170 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

spi_wb_bridge

class yellow_blocks.spi_wb_bridge.spi_wb_bridge(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

sw_reg

class yellow_blocks.sw_reg.sw_reg(blk, platform, hdl_root=None)

initialize()
This function is called by YellowBlocks __init__ method. We could override __init__ here, but this seems
a little bit more user friendly.

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

sw_reg_sync

class yellow_blocks.sw_reg_sync.sw_reg_sync(blk, platform, hdl_root=None)

initialize()
This function is called by YellowBlocks __init__ method. We could override __init__ here, but this seems
a little bit more user friendly.

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

4.2. Documentation 171

CASPER Toolflow, Release 0.1

sys_block

class yellow_blocks.sys_block.sys_block(blk, platform, hdl_root=None)

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

ten_gbe

class yellow_blocks.ten_gbe.ten_gbe(blk, platform, hdl_root=None)

static factory(blk, plat, hdl_root=None)

instantiate_ktge(top, num=None)

class yellow_blocks.ten_gbe.tengbaser_xilinx_k7(blk, plat, hdl_root, use_gth=False)

__init__(blk, plat, hdl_root, use_gth=False)
Class constructor. Set up the initial values for block attributes, by copying key/val pairs from the blk
dictionary. Call the class’s initialize() method, where the user should set compile parameters and
override this class’s default attributes. Finally, call the class’s check_support() method, to verify that
the block and platform chosen are compatible.

Parameters

• blk – A jasper-standard dictionary containing block information. Key/value pairs in this
dictionary are copied to attributes of this instance.

• platform – A Platform object representing the platform type.

• hdl_root (Optional) – The path to a directory containing all hdl code necessary to
instantiate this block. This root directory is used as a base from which block’s source
files are defined. If None (default), will default to the system’s HDL_ROOT environment
variable.

gen_children()
The mx175 clocks the gth from a clock which is passed through the FPGA and through a jitter cleaner
(si5324) back into the GTH clock port. The first ten gig core needs to make sure this pass through is
instantiated.

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

172 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

instantiate_infra(top, num)

instantiate_phy(top, num)

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.ten_gbe.tengbaser_xilinx_ku7(blk, plat, hdl_root, use_gth=False)

__init__(blk, plat, hdl_root, use_gth=False)
Class constructor. Set up the initial values for block attributes, by copying key/val pairs from the blk
dictionary. Call the class’s initialize() method, where the user should set compile parameters and
override this class’s default attributes. Finally, call the class’s check_support() method, to verify that
the block and platform chosen are compatible.

Parameters

• blk – A jasper-standard dictionary containing block information. Key/value pairs in this
dictionary are copied to attributes of this instance.

• platform – A Platform object representing the platform type.

• hdl_root (Optional) – The path to a directory containing all hdl code necessary to
instantiate this block. This root directory is used as a base from which block’s source
files are defined. If None (default), will default to the system’s HDL_ROOT environment
variable.

gen_children()
The mx175 clocks the gth from a clock which is passed through the FPGA and through a jitter cleaner
(si5324) back into the GTH clock port. The first ten gig core needs to make sure this pass through is
instantiated.

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

instantiate_infra(top, num)

instantiate_phy(top, num)

4.2. Documentation 173

CASPER Toolflow, Release 0.1

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

class yellow_blocks.ten_gbe.tengbe_v2_xilinx_v6(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

vcu118

class yellow_blocks.vcu118.vcu118(blk, platform, hdl_root=None)

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

174 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

Returns Dictionary of tcl command lists. Default {}

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

xadc

class yellow_blocks.xadc.xadc(blk, platform, hdl_root=None)

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

initialize()
This function is called by YellowBlocks __init__ method. We could override __init__ here, but this seems
a little bit more user friendly.

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

xsg

class yellow_blocks.xsg.xsg(blk, platform, hdl_root=None)
An xsg YellowBlock class, representing a CASPER “platform” block. I.e., the block which specifies which
platform you are compiling for, and which clock (or other) compile-time settings you want to use.

Uses 2 attributes from the front end block configuration (in addition to the “platform” attribute which all Yel-
lowBlocks have access to): “clk_rate” (float): The clock rate, in MHz, the compile is targeting for the DSP
pipeline. “clk_src” (string): The clock source (eg. “sys_clk”, “adc0_clk”, etc.) used to run the DSP pipeline.

This block is a little unlike other YellowBlocks – it has 3 jobs:

1) Add a requirement – “self.requires.append(. . .)” – for a block in the design to provide –
“self.provides.append(. . .)” – four clock phases:

self.clk_src self.clk_src + “90” self.clk_src + “180” self.clk_src + “270”

Probably, these clocks will be provided by the platform-specific block instantiated as a child of this block
(see 3. below). Whichever block provides them must create signals with these names in the top-level
verilog.

4.2. Documentation 175

CASPER Toolflow, Release 0.1

2) Create wires in the top-level verilog desing, and assign the above clock signals to the new names:
“user_clk” “user_clk90” “user_clk180” “user_clk270” This allows modules in the design to use these
clock names, without requiring any knowledge about where they are coming from (eg. sys_clk, an ADC
clock, etc). NOTE: Since this block instantiates clocks with these names, you MUST NOT use user_clkX
signals elsewhere in your design.

3) Instantiate a child YellowBlock, with identical parameters to this block, but with the class name
self.platform.name. This is probably the instance you want to use to generate your custom clocks (eg,
sys_clk, sys_clk90, . . .), so this block should add these signals to top-level verilog, and also “provide”
them using the YellowBlock.provides mechanism.

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

initialize()
Things the toolflow has to know. eg, clocks needed/provided

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

yellow_block

class yellow_blocks.yellow_block.YellowBlock(blk, platform, hdl_root=None)
A yellow block object encodes all the information necessary to instantiate a piece of IP in an existing HDL base
package.

• which verilog modules need to be instantiated.

• which instances need to be connected by signals

• which ports of the instance need to be promoted to top-level

• what is the type of these ports (for the constraints file)

• is the device a slave on a CPU bus

• if so, how much address space does it need?

• what features does this block provide the rest of the system, e.g. clock sources

• what fixed resources does this block use (e.g. QDR chip / ZDOK interface)

All the HDL related stuff is dealt with by the verilog module class, so we just need to add bus / memory space
requirements and define what resources the block uses and provisions.

__init__(blk, platform, hdl_root=None)
Class constructor. Set up the initial values for block attributes, by copying key/val pairs from the blk
dictionary. Call the class’s initialize() method, where the user should set compile parameters and
override this class’s default attributes. Finally, call the class’s check_support() method, to verify that
the block and platform chosen are compatible.

Parameters

• blk – A jasper-standard dictionary containing block information. Key/value pairs in this
dictionary are copied to attributes of this instance.

176 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

• platform – A Platform object representing the platform type.

• hdl_root (Optional) – The path to a directory containing all hdl code necessary to
instantiate this block. This root directory is used as a base from which block’s source
files are defined. If None (default), will default to the system’s HDL_ROOT environment
variable.

add_build_dir_source()
This function is neccessary as yellow blocks dont have access to the build directory when they want to
add a source file that is not in hdl_lib this function can be used. Generate a list of dictionaries containing
files/directories relative to the build_dir, which will be added to the sources of the project. to the project.

Eg.: []

{‘files’: ‘xml2vhdl_hdl_output/’, – this can be a directory or a file ‘library’ : ‘work’} – this is
only used if the file needs to be included under a library (vhdl only) for verilog use ‘’

]

Returns Dictionary of tcl command lists. Default {}

add_source(path)
Add a source file to the list of files required to compile this yellow block. The path given should be relative
to the root directory hdl_root. Globbing is supported.

Parameters path – Path of file required for compilation. Eg “/some/source/file.v” or
“/some/files*.v”

blk = None
Stores the blk parameter, passed into this block’s constructor.

check_support()
Check the platform being used is supported by this block. Relies on subclasses to set the
platform_support attribute appropriately in their initialize() methods. The default of the
YellowBlock class is platform_support = 'all'.

Throw an error if the platform appears unsupported.

copy_attrs()
Grab the dictionary entries of self.blk and turn them into attributes of this YellowBlock instance.

drc()
Perform block-specific design rule checks. This method should be overridden by subclasses if any custom
design checks are required.

exc_requires = None
“Exclusive requirements”. A list of strings, e.g. “zdok0”, “sfp2”, detailing a resources this block needs in
order to compile. If another block tries to require the same resource, the compile will fail error checking.

gen_children()
The toolflow will try to allow blocks to instantiate other blocks themselves, by calling this method. Over-
ride it in your subclass if you need to use this functionality.

Returns A list of child YellowBlock instances

gen_constraints()
Generate a list of Constraint objects, appropriate for this block. This method should be over-ridden by
sub-classes to return a list of constraints as defined in constraints.py

Returns A list of Constraint instances. Default is []

4.2. Documentation 177

CASPER Toolflow, Release 0.1

gen_custom_hdl()
Generate a dictionary of custom hdl, to be saved as a file and added to the sources of the generated project.
The key is the file name and the value is a string of HDL code to save in to that file. Eg.: {

‘my_hdl.vhdl’: [“<HDL code>”], ‘my_2nd_hdl.vhdl’ : [“<More HDL code>”],

}

Returns Dictionary of hdl files. Default {}

gen_tcl_cmds()
Generate a dictionary of tcl command lists, to be executed at compile time. Allowed keys are: init,
pre_synth, synth, post_synth, pre_impl, impl, post_impl, pre_bitgen, bitgen,
post_bitgen, prom_gem. The key used determines at what stage the tcl commands will be run.

Eg.:

{
'pre_synth': ["first pre-synthesis tcl command", "second pre-synthesis

→˓tcl command"],
'prom_gen' : ["A tcl command to generate a prom file after bit gen"],

}

Returns Dictionary of tcl command lists. Default {}

hdl_root = None
The base directory from which source file’s locations are specified

i_am_the_first = None
A boolean, which is True if self.inst_id == 0

initialize()
This function is called by the __init__() method. It is meant to be overridden by subclasses.

It should over-ride instance attributes to configure the block.

Common attributes which might be manipulated are: requires, exc_requires, provides, ips,
sources, platform_supports

inst_id = None
The ID of this block within all the instances of this block’s class

ips = None
A list of IP dictionaries defining user-supplied IP to include with this block Dictionaries in this list have
keys path (the path to the library) name (the name of the IP) module_name (the name of the HDL module
this block defines) vendor, library, version (strings used by the backend to instantiate the IP)

logger = None
The jasper.yellowblock logger

static make_block(blk, platform, hdl_root=None)
A builder function to return an instance of the correct YellowBlock subclass for a given type of block
and target platform.

Parameters

• blk – A jasper-standard dictionary containing block information

• platform – A Platform object representing the platform type.

Optional keyword param hdl_root The path to a directory containing all hdl code necessary
to instantiate this block. This root directory is used as a base from which block’s source files
are defined.

178 Chapter 4. mlib_devel directory structure

CASPER Toolflow, Release 0.1

modify_top(top)
Modify the VerilogModule instance top (so as to instantiate this module’s HDL) This method should be
overridden by subclasses implementing their custom HDL requirements.

Parameters top – A VerilogModule instance, defining the top-level of an HDL design into
which this block should instantiate itself.

name = None
A friendly name for this block, generated from the tag entry in the self.blk dictionary and self.inst_id. Eg.
“sw_reg5”, or “ten_gbe0”

platform = None
Stores the platform parameter, passed into this block’s constructor

platform_support = None
A list of platform names this block supports, or, the string “all”, indicating the block is platform agnostic.

provides = None
A list of strings, eg. “zdok0”, “sfp1”, detailing a resource this block provides to the design. These will
me matched against self.requires and self.exc_requires of all the blocks in the design to determine if the
compile is viable.

requires = None
A list of strings, eg. “zdok0”, “sfp1”, detailing a resource this block needs to compile. To pass rule-
checking, every entry here must be matched with an entry in self.provides of another block, or the target
platform

sources = None
A list of source files (paths relative to self.hdl_root) required by this module

throw_error(message)
Raise an exception, showing the input message, but prefixing with a human-readable yellow block name.

typecode = None
A unique typecode indicating the type of yellow block this is. See yellow_block_typecodes.py. This code
gets baked into a memory-map in the FPGA binary, and allows embedded software to figure out what type
of devices are on the CPU bus.

yellow_block_typecodes

Here lie device typecode definitions. These codes get baked into toolflow-generate firmware can be used by embedded
software to determine what types of devices are present on the CPU bus at different memory locations.

For example, a typical use case would be:

1. MicroBlaze wakes up on programming a board

2. Microblaze looks for an Ethernet core in the running firmware by searching for something in the firmware’s
memory map with typecode TYPECODE_ETHCORE.

3. MicroBlaze manipulates this device so as to talk to the outside world.

Values chosen are non-critical, but should be unique, and <256.

4.3 Get Involved

If you are a CASPER collaborator, or you’re just interested in what we’re up to, feel free to join our mailing list by
sending a blank email here.

4.3. Get Involved 179

mailto:casper+subscribe@lists.berkeley.edu

CASPER Toolflow, Release 0.1

If would like to get involved in the development of the tools, please join our dev mailing list by sending a blank email
here..

180 Chapter 4. mlib_devel directory structure

mailto:casper-dev+subscribe@lists.berkeley.edu

Python Module Index

c
castro, 135
constraints, 137

e
exec_flow, 142

h
helpers, 142

m
memory, 143

p
platform, 143

t
toolflow, 146

v
verilog, 152

y
yellow_blocks.adc, 159
yellow_blocks.adc16, 159
yellow_blocks.adc20g, 160
yellow_blocks.adc5g, 160
yellow_blocks.bram, 161
yellow_blocks.clock_passthrough, 161
yellow_blocks.dcp, 161
yellow_blocks.forty_gbe, 162
yellow_blocks.gpio, 162
yellow_blocks.gpio_bidir, 163
yellow_blocks.hmc, 163
yellow_blocks.i2c_interface, 164
yellow_blocks.ip, 164
yellow_blocks.lmx2581, 164
yellow_blocks.microblaze, 165
yellow_blocks.onegbe, 166

yellow_blocks.skarab, 168
yellow_blocks.snap, 168
yellow_blocks.snap2, 169
yellow_blocks.snap_adc, 170
yellow_blocks.spi_wb_bridge, 171
yellow_blocks.sw_reg, 171
yellow_blocks.sw_reg_sync, 171
yellow_blocks.sys_block, 172
yellow_blocks.ten_gbe, 172
yellow_blocks.vcu118, 174
yellow_blocks.xadc, 175
yellow_blocks.xsg, 175
yellow_blocks.yellow_block, 176
yellow_blocks.yellow_block_typecodes,

179

181

CASPER Toolflow, Release 0.1

182 Python Module Index

Index

Symbols
__init__() (castro.Castro method), 135
__init__() (castro.ClkConstraint method), 136
__init__() (castro.ClkGrpConstraint method), 136
__init__() (castro.FalsePthConstraint method), 136
__init__() (castro.GenClkConstraint method), 136
__init__() (castro.InDelayConstraint method), 136
__init__() (castro.MaxDelayConstraint method),

136
__init__() (castro.MinDelayConstraint method), 136
__init__() (castro.MultiCycConstraint method), 136
__init__() (castro.OutDelayConstraint method), 136
__init__() (castro.PinConstraint method), 137
__init__() (castro.RawConstraint method), 137
__init__() (castro.Synthesis method), 137
__init__() (castro.mm_slave method), 137
__init__() (constraints.ClockConstraint method),

137
__init__() (constraints.ClockGroupConstraint

method), 138
__init__() (constraints.FalsePathConstraint

method), 139
__init__() (constraints.GenClockConstraint

method), 139
__init__() (constraints.InputDelayConstraint

method), 139
__init__() (constraints.MaxDelayConstraint

method), 140
__init__() (constraints.MinDelayConstraint

method), 140
__init__() (constraints.MultiCycleConstraint

method), 141
__init__() (constraints.OutputDelayConstraint

method), 141
__init__() (constraints.PortConstraint method), 142
__init__() (constraints.RawConstraint method), 142
__init__() (memory.Register method), 143
__init__() (toolflow.ISEBackend method), 146
__init__() (toolflow.SimulinkFrontend method), 147

__init__() (toolflow.Toolflow method), 147
__init__() (toolflow.ToolflowBackend method), 149
__init__() (toolflow.ToolflowFrontend method), 150
__init__() (toolflow.VivadoBackend method), 150
__init__() (verilog.AXI4LiteDevice method), 152
__init__() (verilog.ImmutableWithComments

method), 152
__init__() (verilog.Parameter method), 152
__init__() (verilog.Port method), 153
__init__() (verilog.Signal method), 153
__init__() (verilog.VerilogModule method), 154
__init__() (verilog.WbDevice method), 158
__init__() (yellow_blocks.ten_gbe.tengbaser_xilinx_k7

method), 172
__init__() (yellow_blocks.ten_gbe.tengbaser_xilinx_ku7

method), 173
__init__() (yellow_blocks.yellow_block.YellowBlock

method), 176

A
adc (class in yellow_blocks.adc), 159
adc16 (class in yellow_blocks.adc16), 159
adc20g (class in yellow_blocks.adc20g), 160
adc5g (class in yellow_blocks.adc5g), 160
add_axi4lite_interface() (ver-

ilog.VerilogModule method), 155
add_build_dir_source() (yel-

low_blocks.yellow_block.YellowBlock method),
177

add_compile_cmds() (toolflow.ISEBackend
method), 146

add_compile_cmds() (toolflow.VivadoBackend
method), 150

add_const_file() (toolflow.ToolflowBackend
method), 149

add_const_file() (toolflow.VivadoBackend
method), 150

add_ip() (toolflow.VivadoBackend method), 150
add_library() (toolflow.VivadoBackend method),

150

183

CASPER Toolflow, Release 0.1

add_localparam() (verilog.VerilogModule method),
155

add_parameter() (verilog.VerilogModule method),
155

add_port() (verilog.VerilogModule method), 155
add_raw_string() (verilog.VerilogModule method),

155
add_signal() (verilog.VerilogModule method), 155
add_source() (toolflow.ToolflowBackend method),

149
add_source() (toolflow.VivadoBackend method), 150
add_source() (yellow_blocks.yellow_block.YellowBlock

method), 177
add_sourcefile() (verilog.VerilogModule method),

155
add_tcl_cmd() (toolflow.VivadoBackend method),

151
add_wb_interface() (verilog.VerilogModule

method), 155
architecture() (in module platform), 143
assign_signal() (verilog.VerilogModule method),

155
assign_wb_interface() (verilog.VerilogModule

method), 156
axi4lite_memory_map() (verilog.VerilogModule

method), 156
AXI4LiteDevice (class in verilog), 152

B
base_addr (verilog.AXI4LiteDevice attribute), 152
base_addr (verilog.WbDevice attribute), 158
blk (yellow_blocks.yellow_block.YellowBlock attribute),

177
bram (class in yellow_blocks.bram), 161
build_top() (toolflow.Toolflow method), 147

C
calculate_checksum_using_bitstream()

(toolflow.ToolflowBackend static method), 149
Castro (class in castro), 135
castro (module), 135
check_attr_exists() (toolflow.Toolflow method),

147
check_support() (yel-

low_blocks.yellow_block.YellowBlock method),
177

ClkConstraint (class in castro), 135
ClkGrpConstraint (class in castro), 136
clock_passthrough (class in yel-

low_blocks.clock_passthrough), 161
ClockConstraint (class in constraints), 137
ClockGroupConstraint (class in constraints), 138
compile() (toolflow.ISEBackend method), 146
compile() (toolflow.ToolflowBackend method), 149

compile() (toolflow.VivadoBackend method), 151
compile_user_ip() (toolflow.SimulinkFrontend

method), 147
compile_user_ip() (toolflow.ToolflowFrontend

method), 150
constraints (module), 137
constraints_rule_check() (toolflow.Toolflow

method), 148
copy_attrs() (yellow_blocks.yellow_block.YellowBlock

method), 177

D
dcp (class in yellow_blocks.dcp), 161
dist() (in module platform), 144
drc() (yellow_blocks.yellow_block.YellowBlock

method), 177
dump() (castro.Castro method), 135
dump_castro() (toolflow.Toolflow method), 148

E
eval_tcl() (toolflow.VivadoBackend method), 151
exc_requires (yellow_blocks.yellow_block.YellowBlock

attribute), 177
exec_flow (module), 142
exec_flow() (toolflow.Toolflow method), 148

F
factory() (yellow_blocks.microblaze.microblaze

static method), 165
factory() (yellow_blocks.onegbe.onegbe static

method), 166
factory() (yellow_blocks.ten_gbe.ten_gbe static

method), 172
FalsePathConstraint (class in constraints), 138
FalsePthConstraint (class in castro), 136
format_cfg_const() (toolflow.VivadoBackend

static method), 151
format_clock_const() (toolflow.ISEBackend

static method), 146
format_clock_const() (toolflow.VivadoBackend

static method), 151
format_clock_group_const()

(toolflow.VivadoBackend static method),
151

format_const() (toolflow.ISEBackend static
method), 146

format_const() (toolflow.VivadoBackend static
method), 151

format_false_path_const()
(toolflow.VivadoBackend static method),
151

format_gen_clock_const()
(toolflow.VivadoBackend static method),
151

184 Index

CASPER Toolflow, Release 0.1

format_input_delay_const()
(toolflow.VivadoBackend static method),
151

format_max_delay_const()
(toolflow.VivadoBackend static method),
151

format_min_delay_const()
(toolflow.VivadoBackend static method),
151

format_multi_cycle_const()
(toolflow.VivadoBackend static method),
151

format_output_delay_const()
(toolflow.VivadoBackend static method),
151

forty_gbe (class in yellow_blocks.forty_gbe), 162

G
gen_add_compile_dir_source_tcl_cmds()

(toolflow.VivadoBackend method), 151
gen_assignments_ascii_art() (ver-

ilog.VerilogModule method), 156
gen_assignments_str() (verilog.VerilogModule

method), 156
gen_children() (yellow_blocks.skarab.skarab

method), 168
gen_children() (yellow_blocks.snap.snap method),

168
gen_children() (yellow_blocks.snap2.snap2

method), 169
gen_children() (yellow_blocks.snap_adc.snap_adc

method), 170
gen_children() (yel-

low_blocks.ten_gbe.tengbaser_xilinx_k7
method), 172

gen_children() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

gen_children() (yellow_blocks.vcu118.vcu118
method), 174

gen_children() (yellow_blocks.xsg.xsg method),
176

gen_children() (yel-
low_blocks.yellow_block.YellowBlock method),
177

gen_constraint_file() (toolflow.ISEBackend
method), 146

gen_constraint_file()
(toolflow.ToolflowBackend method), 149

gen_constraint_file() (toolflow.VivadoBackend
method), 151

gen_constraints() (yellow_blocks.adc.adc
method), 159

gen_constraints() (yellow_blocks.adc16.adc16
method), 159

gen_constraints() (yellow_blocks.adc20g.adc20g
method), 160

gen_constraints() (yellow_blocks.adc5g.adc5g
method), 160

gen_constraints() (yel-
low_blocks.clock_passthrough.clock_passthrough
method), 161

gen_constraints() (yel-
low_blocks.forty_gbe.forty_gbe method),
162

gen_constraints() (yellow_blocks.gpio.gpio
method), 162

gen_constraints() (yel-
low_blocks.gpio_bidir.gpio_bidir method),
163

gen_constraints() (yellow_blocks.hmc.hmc
method), 163

gen_constraints() (yel-
low_blocks.i2c_interface.i2c_interface
method), 164

gen_constraints() (yel-
low_blocks.lmx2581.lmx2581 method), 164

gen_constraints() (yel-
low_blocks.microblaze.microblaze_k7 method),
165

gen_constraints() (yel-
low_blocks.microblaze.microblaze_ku7
method), 165

gen_constraints() (yel-
low_blocks.onegbe.onegbe_casia_k7 method),
166

gen_constraints() (yel-
low_blocks.onegbe.onegbe_snap method),
167

gen_constraints() (yel-
low_blocks.onegbe.onegbe_vcu118 method),
167

gen_constraints() (yel-
low_blocks.onegbe.onegbe_vcu128 method),
167

gen_constraints() (yellow_blocks.skarab.skarab
method), 168

gen_constraints() (yellow_blocks.snap.snap
method), 168

gen_constraints() (yellow_blocks.snap2.snap2
method), 169

gen_constraints() (yel-
low_blocks.snap_adc.snap_adc method),
170

gen_constraints() (yel-
low_blocks.spi_wb_bridge.spi_wb_bridge
method), 171

Index 185

CASPER Toolflow, Release 0.1

gen_constraints() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_k7
method), 172

gen_constraints() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

gen_constraints() (yel-
low_blocks.ten_gbe.tengbe_v2_xilinx_v6
method), 174

gen_constraints() (yellow_blocks.vcu118.vcu118
method), 174

gen_constraints() (yellow_blocks.xadc.xadc
method), 175

gen_constraints() (yel-
low_blocks.yellow_block.YellowBlock method),
177

gen_cur_blk_comment() (verilog.VerilogModule
method), 156

gen_custom_hdl() (yel-
low_blocks.yellow_block.YellowBlock method),
177

gen_default_nettype_str() (ver-
ilog.VerilogModule method), 156

gen_endmod_str() (verilog.VerilogModule method),
156

gen_instance_verilog() (verilog.VerilogModule
method), 156

gen_instances_ascii_art() (ver-
ilog.VerilogModule method), 156

gen_instances_dec_str() (ver-
ilog.VerilogModule method), 156

gen_localparams_dec_str() (ver-
ilog.VerilogModule method), 156

gen_mod_dec_str() (verilog.VerilogModule
method), 157

gen_module_file() (verilog.VerilogModule
method), 157

gen_params_dec_str() (verilog.VerilogModule
method), 157

gen_periph_file() (toolflow.SimulinkFrontend
method), 147

gen_periph_file() (toolflow.ToolflowFrontend
method), 150

gen_periph_objs() (toolflow.Toolflow method), 148
gen_physical_const() (con-

straints.PortConstraint method), 142
gen_port_list() (verilog.VerilogModule method),

157
gen_ports_dec_str() (verilog.VerilogModule

method), 157
gen_signals_ascii_art() (ver-

ilog.VerilogModule method), 157
gen_signals_dec_str() (verilog.VerilogModule

method), 157

gen_tcl_cmds() (yellow_blocks.forty_gbe.forty_gbe
method), 162

gen_tcl_cmds() (yel-
low_blocks.microblaze.microblaze_k7 method),
165

gen_tcl_cmds() (yel-
low_blocks.microblaze.microblaze_ku7
method), 166

gen_tcl_cmds() (yellow_blocks.snap.snap method),
168

gen_tcl_cmds() (yellow_blocks.snap2.snap2
method), 169

gen_tcl_cmds() (yellow_blocks.vcu118.vcu118
method), 174

gen_tcl_cmds() (yel-
low_blocks.yellow_block.YellowBlock method),
178

gen_top_mod() (verilog.VerilogModule method), 157
gen_wbs_master_arbiter() (in module verilog),

158
gen_yellowblock_custom_hdl()

(toolflow.VivadoBackend method), 151
gen_yellowblock_tcl_cmds()

(toolflow.VivadoBackend method), 151
GenClkConstraint (class in castro), 136
GenClockConstraint (class in constraints), 139
generate_consts() (toolflow.Toolflow method), 148
generate_hdl() (toolflow.Toolflow method), 148
generate_xml_ic() (toolflow.Toolflow method), 148
generate_xml_memory_map() (toolflow.Toolflow

method), 148
get_base_wb_slaves() (verilog.VerilogModule

method), 157
get_instance() (verilog.VerilogModule method),

157
get_tcl_const() (toolflow.VivadoBackend method),

151
get_ucf_const() (toolflow.ISEBackend method),

147
gpio (class in yellow_blocks.gpio), 162
gpio_bidir (class in yellow_blocks.gpio_bidir), 163

H
has_instance() (verilog.VerilogModule method),

157
hdl_root (yellow_blocks.yellow_block.YellowBlock at-

tribute), 178
helpers (module), 142
high_addr (verilog.AXI4LiteDevice attribute), 152
high_addr (verilog.WbDevice attribute), 158
hmc (class in yellow_blocks.hmc), 163

I
i2c_interface (class in yel-

186 Index

CASPER Toolflow, Release 0.1

low_blocks.i2c_interface), 164
i_am_the_first (yel-

low_blocks.yellow_block.YellowBlock at-
tribute), 178

ImmutableWithComments (class in verilog), 152
import_from_castro() (toolflow.ToolflowBackend

method), 149
InDelayConstraint (class in castro), 136
initialize() (toolflow.ToolflowBackend method),

149
initialize() (toolflow.VivadoBackend method), 151
initialize() (yellow_blocks.adc.adc method), 159
initialize() (yellow_blocks.adc16.adc16 method),

159
initialize() (yellow_blocks.adc20g.adc20g

method), 160
initialize() (yellow_blocks.adc5g.adc5g method),

160
initialize() (yellow_blocks.bram.bram method),

161
initialize() (yellow_blocks.clock_passthrough.clock_passthrough

method), 161
initialize() (yellow_blocks.dcp.dcp method), 161
initialize() (yellow_blocks.forty_gbe.forty_gbe

method), 162
initialize() (yellow_blocks.gpio.gpio method), 162
initialize() (yellow_blocks.gpio_bidir.gpio_bidir

method), 163
initialize() (yellow_blocks.hmc.hmc method), 163
initialize() (yellow_blocks.i2c_interface.i2c_interface

method), 164
initialize() (yellow_blocks.ip.ip method), 164
initialize() (yellow_blocks.lmx2581.lmx2581

method), 164
initialize() (yellow_blocks.microblaze.microblaze

method), 165
initialize() (yellow_blocks.onegbe.onegbe_casia_k7

method), 166
initialize() (yellow_blocks.onegbe.onegbe_snap

method), 167
initialize() (yellow_blocks.onegbe.onegbe_vcu118

method), 167
initialize() (yellow_blocks.onegbe.onegbe_vcu128

method), 167
initialize() (yellow_blocks.skarab.skarab method),

168
initialize() (yellow_blocks.snap.snap method),

169
initialize() (yellow_blocks.snap2.snap2 method),

170
initialize() (yellow_blocks.snap_adc.snap_adc

method), 170
initialize() (yellow_blocks.spi_wb_bridge.spi_wb_bridge

method), 171

initialize() (yellow_blocks.sw_reg.sw_reg
method), 171

initialize() (yellow_blocks.sw_reg_sync.sw_reg_sync
method), 171

initialize() (yellow_blocks.sys_block.sys_block
method), 172

initialize() (yellow_blocks.ten_gbe.tengbaser_xilinx_k7
method), 172

initialize() (yellow_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

initialize() (yellow_blocks.ten_gbe.tengbe_v2_xilinx_v6
method), 174

initialize() (yellow_blocks.vcu118.vcu118
method), 175

initialize() (yellow_blocks.xadc.xadc method),
175

initialize() (yellow_blocks.xsg.xsg method), 176
initialize() (yellow_blocks.yellow_block.YellowBlock

method), 178
InputDelayConstraint (class in constraints), 139
inst_id (yellow_blocks.yellow_block.YellowBlock at-

tribute), 178
instantiate_child_ports() (ver-

ilog.VerilogModule method), 157
instantiate_fgbe() (yel-

low_blocks.forty_gbe.forty_gbe method),
162

instantiate_hmcc() (yellow_blocks.hmc.hmc
method), 163

instantiate_infra() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_k7
method), 173

instantiate_infra() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

instantiate_ktge() (yel-
low_blocks.ten_gbe.ten_gbe method), 172

instantiate_phy() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_k7
method), 173

instantiate_phy() (yel-
low_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

instantiate_wb_arb_module() (in module ver-
ilog), 158

ip (class in yellow_blocks.ip), 164
ips (yellow_blocks.yellow_block.YellowBlock attribute),

178
ISEBackend (class in toolflow), 146

J
java_ver() (in module platform), 144

Index 187

CASPER Toolflow, Release 0.1

L
libc_ver() (in module platform), 144
linux_distribution() (in module platform), 144
lmx2581 (class in yellow_blocks.lmx2581), 164
load() (castro.Castro static method), 135
logger (yellow_blocks.yellow_block.YellowBlock at-

tribute), 178

M
mac_ver() (in module platform), 144
machine() (in module platform), 144
make_block() (yellow_blocks.yellow_block.YellowBlock

static method), 178
MaxDelayConstraint (class in castro), 136
MaxDelayConstraint (class in constraints), 140
memory (module), 143
microblaze (class in yellow_blocks.microblaze), 165
microblaze_k7 (class in yellow_blocks.microblaze),

165
microblaze_ku7 (class in yellow_blocks.microblaze),

165
MinDelayConstraint (class in castro), 136
MinDelayConstraint (class in constraints), 140
mkfpg() (toolflow.ToolflowBackend method), 149
mm_slave (class in castro), 137
modify_top() (yellow_blocks.adc.adc method), 159
modify_top() (yellow_blocks.adc16.adc16 method),

159
modify_top() (yellow_blocks.adc20g.adc20g

method), 160
modify_top() (yellow_blocks.adc5g.adc5g method),

160
modify_top() (yellow_blocks.bram.bram method),

161
modify_top() (yellow_blocks.clock_passthrough.clock_passthrough

method), 161
modify_top() (yellow_blocks.forty_gbe.forty_gbe

method), 162
modify_top() (yellow_blocks.gpio.gpio method), 163
modify_top() (yellow_blocks.gpio_bidir.gpio_bidir

method), 163
modify_top() (yellow_blocks.hmc.hmc method), 163
modify_top() (yellow_blocks.i2c_interface.i2c_interface

method), 164
modify_top() (yellow_blocks.lmx2581.lmx2581

method), 164
modify_top() (yellow_blocks.microblaze.microblaze_k7

method), 165
modify_top() (yellow_blocks.microblaze.microblaze_ku7

method), 166
modify_top() (yellow_blocks.onegbe.onegbe

method), 166
modify_top() (yellow_blocks.onegbe.onegbe_casia_k7

method), 166

modify_top() (yellow_blocks.onegbe.onegbe_snap
method), 167

modify_top() (yellow_blocks.onegbe.onegbe_vcu118
method), 167

modify_top() (yellow_blocks.onegbe.onegbe_vcu128
method), 168

modify_top() (yellow_blocks.skarab.skarab method),
168

modify_top() (yellow_blocks.snap.snap method),
169

modify_top() (yellow_blocks.snap2.snap2 method),
170

modify_top() (yellow_blocks.snap_adc.snap_adc
method), 170

modify_top() (yellow_blocks.spi_wb_bridge.spi_wb_bridge
method), 171

modify_top() (yellow_blocks.sw_reg.sw_reg
method), 171

modify_top() (yellow_blocks.sw_reg_sync.sw_reg_sync
method), 171

modify_top() (yellow_blocks.sys_block.sys_block
method), 172

modify_top() (yellow_blocks.ten_gbe.tengbaser_xilinx_k7
method), 173

modify_top() (yellow_blocks.ten_gbe.tengbaser_xilinx_ku7
method), 173

modify_top() (yellow_blocks.ten_gbe.tengbe_v2_xilinx_v6
method), 174

modify_top() (yellow_blocks.vcu118.vcu118
method), 175

modify_top() (yellow_blocks.xadc.xadc method),
175

modify_top() (yellow_blocks.xsg.xsg method), 176
modify_top() (yellow_blocks.yellow_block.YellowBlock

method), 179
MultiCycConstraint (class in castro), 136
MultiCycleConstraint (class in constraints), 140

N
name (yellow_blocks.yellow_block.YellowBlock at-

tribute), 179
node() (in module platform), 145

O
onegbe (class in yellow_blocks.onegbe), 166
onegbe_casia_k7 (class in yellow_blocks.onegbe),

166
onegbe_snap (class in yellow_blocks.onegbe), 167
onegbe_vcu118 (class in yellow_blocks.onegbe), 167
onegbe_vcu128 (class in yellow_blocks.onegbe), 167
OutDelayConstraint (class in castro), 136
OutputDelayConstraint (class in constraints),

141

188 Index

CASPER Toolflow, Release 0.1

P
Parameter (class in verilog), 152
PinConstraint (class in castro), 136
platform (module), 143
platform (yellow_blocks.yellow_block.YellowBlock at-

tribute), 179
platform() (in module platform), 145
platform_support (yel-

low_blocks.yellow_block.YellowBlock at-
tribute), 179

popen() (in module platform), 145
Port (class in verilog), 153
PortConstraint (class in constraints), 141
processor() (in module platform), 145
provides (yellow_blocks.yellow_block.YellowBlock at-

tribute), 179
python_branch() (in module platform), 145
python_build() (in module platform), 145
python_compiler() (in module platform), 145
python_implementation() (in module platform),

145
python_revision() (in module platform), 145
python_version() (in module platform), 145
python_version_tuple() (in module platform),

145

R
RawConstraint (class in castro), 137
RawConstraint (class in constraints), 142
regenerate_top() (toolflow.Toolflow method), 148
Register (class in memory), 143
release() (in module platform), 146
reorder_ports() (yel-

low_blocks.snap_adc.snap_adc method),
170

requires (yellow_blocks.yellow_block.YellowBlock at-
tribute), 179

resolve_constraint() (castro.Synthesis method),
137

rewrite_module_file() (verilog.VerilogModule
method), 157

S
search_dict_for_name() (verilog.VerilogModule

method), 157
set_cur_blk() (verilog.VerilogModule method), 157
shell_source() (in module exec_flow), 142
Signal (class in verilog), 153
SimulinkFrontend (class in toolflow), 147
skarab (class in yellow_blocks.skarab), 168
snap (class in yellow_blocks.snap), 168
snap2 (class in yellow_blocks.snap2), 169
snap_adc (class in yellow_blocks.snap_adc), 170

sources (yellow_blocks.yellow_block.YellowBlock at-
tribute), 179

spi_wb_bridge (class in yel-
low_blocks.spi_wb_bridge), 171

sub_arb_id (verilog.WbDevice attribute), 158
sw_reg (class in yellow_blocks.sw_reg), 171
sw_reg_sync (class in yellow_blocks.sw_reg_sync),

171
Synthesis (class in castro), 137
sys_block (class in yellow_blocks.sys_block), 172
system() (in module platform), 146
system_alias() (in module platform), 146

T
ten_gbe (class in yellow_blocks.ten_gbe), 172
tengbaser_xilinx_k7 (class in yel-

low_blocks.ten_gbe), 172
tengbaser_xilinx_ku7 (class in yel-

low_blocks.ten_gbe), 173
tengbe_v2_xilinx_v6 (class in yel-

low_blocks.ten_gbe), 174
throw_error() (yel-

low_blocks.yellow_block.YellowBlock method),
179

to_int_list() (in module helpers), 142
Toolflow (class in toolflow), 147
toolflow (module), 146
ToolflowBackend (class in toolflow), 149
ToolflowFrontend (class in toolflow), 150
typecode (yellow_blocks.yellow_block.YellowBlock at-

tribute), 179

U
uname() (in module platform), 146
update_attrs() (verilog.Parameter method), 152
update_attrs() (verilog.Port method), 153
update_attrs() (verilog.Signal method), 153

V
vcu118 (class in yellow_blocks.vcu118), 174
verilog (module), 152
VerilogModule (class in verilog), 153
version() (in module platform), 146
VivadoBackend (class in toolflow), 150

W
wb_compute() (verilog.VerilogModule method), 157
WbDevice (class in verilog), 158
win32_ver() (in module platform), 146
write_core_info() (toolflow.Toolflow method), 148
write_core_jam_info() (toolflow.Toolflow

method), 148
write_file() (in module helpers), 142

Index 189

CASPER Toolflow, Release 0.1

write_git_info_file()
(toolflow.SimulinkFrontend method), 147

write_git_info_file()
(toolflow.ToolflowFrontend method), 150

write_new_module_file() (ver-
ilog.VerilogModule method), 158

X
xadc (class in yellow_blocks.xadc), 175
xml2vhdl() (toolflow.Toolflow method), 148
xsg (class in yellow_blocks.xsg), 175

Y
yellow_blocks.adc (module), 159
yellow_blocks.adc16 (module), 159
yellow_blocks.adc20g (module), 160
yellow_blocks.adc5g (module), 160
yellow_blocks.bram (module), 161
yellow_blocks.clock_passthrough (module),

161
yellow_blocks.dcp (module), 161
yellow_blocks.forty_gbe (module), 162
yellow_blocks.gpio (module), 162
yellow_blocks.gpio_bidir (module), 163
yellow_blocks.hmc (module), 163
yellow_blocks.i2c_interface (module), 164
yellow_blocks.ip (module), 164
yellow_blocks.lmx2581 (module), 164
yellow_blocks.microblaze (module), 165
yellow_blocks.onegbe (module), 166
yellow_blocks.skarab (module), 168
yellow_blocks.snap (module), 168
yellow_blocks.snap2 (module), 169
yellow_blocks.snap_adc (module), 170
yellow_blocks.spi_wb_bridge (module), 171
yellow_blocks.sw_reg (module), 171
yellow_blocks.sw_reg_sync (module), 171
yellow_blocks.sys_block (module), 172
yellow_blocks.ten_gbe (module), 172
yellow_blocks.vcu118 (module), 174
yellow_blocks.xadc (module), 175
yellow_blocks.xsg (module), 175
yellow_blocks.yellow_block (module), 176
yellow_blocks.yellow_block_typecodes

(module), 179
YellowBlock (class in yellow_blocks.yellow_block),

176

190 Index

	What is mlib_devel?
	Using mlib_devel
	Updating an Existing Toolflow Installation
	mlib_devel directory structure
	Python Module Index
	Index

