Source code for adc

from wishbonedevice import WishBoneDevice
import numpy as np
import struct,math
import logging

logger = logging.getLogger(__name__)

[docs]class HMCAD1511(WishBoneDevice): # HMCAD1511 does not provide any way of register readback for # either diagnosis or status checking. If you find something # wrong with a HMCAD1511, reset it. M_ADC0_CS1 = 1 << 0 M_ADC0_CS2 = 1 << 1 M_ADC0_CS3 = 1 << 2 M_ADC0_CS4 = 1 << 3 M_ADC1_CS1 = 1 << 4 M_ADC1_CS2 = 1 << 5 M_ADC1_CS3 = 1 << 6 M_ADC1_CS4 = 1 << 7 M_ADC_SDA = 1 << 8 M_ADC_SCL = 1 << 9 # Wishbone address # Shift zero, looks natural, but very tricky. See the two references below: # https://github.com/zakiali/PAPERCORR/blob/master/corr-0.4.2.2010-10-14/src/katcp_wrapper.py#L343 # https://github.com/jack-h/mlib_devel/blob/jasper_devel/jasper_library/hdl_sources/wb_adc16_controller/wb_adc16_controller.v#L240 A_WB_W_3WIRE = 0 << 0 STATE_3WIRE_START = 1 STATE_3WIRE_TRANS = 2 STATE_3WIRE_STOP = 3 # Register address DICT = [None] * (0x56+1) DICT[0x00] = { 'rst' : 0b1 << 0,} DICT[0x0f] = { 'sleep4_ch' : 0b1111 << 0, 'sleep2_ch' : 0b11 << 4, 'sleep1_ch1' : 0b1 << 6, 'sleep' : 0b1 << 8, 'pd' : 0b1 << 9, 'pd_pin_cfg' : 0b11 << 10, } DICT[0x11] = { 'ilvds_lclk' : 0b111 << 0, 'ilvds_frame' : 0b111 << 4, 'ilvds_dat' : 0b111 << 8, } DICT[0x12] = { 'en_lvds_term' : 0b1 << 14, 'term_lclk' : 0b111 << 0, 'term_frame' : 0b111 << 4, 'term_dat' : 0b111 << 8, } DICT[0x24] = { 'invert4_ch' : 0b1111 << 0, 'invert2_ch' : 0b11 << 4, 'invert1_ch1' : 0b1 << 6, } DICT[0x25] = { 'en_ramp' : 0b111 << 4, 'dual_custom_pat' : 0b111 << 4, 'single_custom_pat' : 0b111 << 4, } DICT[0x26] = { 'bits_custom1' : 0b11111111 << 8, } DICT[0x27] = { 'bits_custom2' : 0b11111111 << 8, } DICT[0x2a] = { 'cgain4_ch1' : 0b1111 << 0, 'cgain4_ch2' : 0b1111 << 4, 'cgain4_ch3' : 0b1111 << 8, 'cgain4_ch4' : 0b1111 << 12, } DICT[0x2b] = { 'cgain2_ch1' : 0b1111 << 0, 'cgain2_ch2' : 0b1111 << 4, 'cgain1_ch1' : 0b1111 << 8, } DICT[0x30] = { 'jitter_ctrl' : 0b11111111 << 0, } DICT[0x31] = { 'channel_num' : 0b111 << 0, 'clk_divide' : 0b11 << 8, } DICT[0x33] = { 'cgain_cfg' : 0b1 << 0, 'fine_gain_en' : 0b1 << 1, } DICT[0x34] = { 'fgain_branch1' : 0b1111111 << 0, 'fgain_branch2' : 0b1111111 << 8, } DICT[0x35] = { 'fgain_branch3' : 0b1111111 << 0, 'fgain_branch4' : 0b1111111 << 8, } DICT[0x36] = { 'fgain_branch5' : 0b1111111 << 0, 'fgain_branch6' : 0b1111111 << 8, } DICT[0x37] = { 'fgain_branch7' : 0b1111111 << 0, 'fgain_branch8' : 0b1111111 << 8, } DICT[0x3a] = { 'inp_sel_adc1' : 0b11111 << 0, 'inp_sel_adc2' : 0b11111 << 8, } DICT[0x3b] = { 'inp_sel_adc3' : 0b11111 << 0, 'inp_sel_adc4' : 0b11111 << 8, } DICT[0x42] = { 'phase_ddr' : 0b11 << 5, } DICT[0x45] = { 'pat_deskew' : 0b11 << 0, 'pat_sync' : 0b11 << 0, } DICT[0x46] = { 'btc_mode' : 0b1 << 2, 'msb_first' : 0b1 << 3, } DICT[0x50] = { 'adc_curr' : 0b111 << 0, 'ext_vcm_bc' : 0b11 << 4, } DICT[0x52] = { 'lvds_pd_mode' : 0b1 << 0, } DICT[0x53] = { 'low_clk_freq' : 0b1 << 3, 'lvds_advance' : 0b1 << 4, 'lvds_delay' : 0b1 << 5, } DICT[0x55] = { 'fs_cntrl' : 0b111111 << 0, } DICT[0x56] = { 'startup_ctrl' : 0b111 << 0, } CGAIN_DICT_0 = { 0 : 0b0000, 1 : 0b0001, 2 : 0b0010, 3 : 0b0011, 4 : 0b0100, 5 : 0b0101, 6 : 0b0110, 7 : 0b0111, 8 : 0b0000, 9 : 0b0001, 10 : 0b0010, 11 : 0b0011, 12 : 0b1100,} CGAIN_DICT_1 = { 1 : 0b0000, 1.25 : 0b0001, 2 : 0b0010, 2.5 : 0b0011, 4 : 0b0100, 5 : 0b0101, 8 : 0b0110, 10 : 0b0111, 12.5 : 0b1000, 16 : 0b1001, 20 : 0b1010, 25 : 0b1011, 32 : 0b1100, 50 : 0b1101,}
[docs] def __init__(self, interface, controller_name, cs=0xff): """ HMCAD1511 High Speed Multi-Mode 8-Bit 1 GSPS A/D Converter interface: an instance of casperfpga.CasperFpga controller_name: the name of the adc16_interface cs: Set cs to 0xff if you want all ADC chips share the same configuartion. Or if you want to config them separately (e.g. calibrating interleaving adc gain error for each ADC chip), set cs to 0b1, 0b10, 0b100, 0b1000... for different HMCAD1511 python objects Here is an example of configuring a register. E.g. # Make an instance of adc adc = HMCAD1511(interface,'adc16_interface') # Select the 2nd and 3rd ADCs, but unselect the 1st ADC. # cs stands for chip select. The last bit of cs is for the 1st ADC adc.cs = 0b110 # Target fields you want to configure. They belong to one register # Please refer to HMCAD1511 datasheet for more details # en_lvds_term LVDS buffers # term_lclk<2:0> LCLKN and LCLKP buffers # term_frame<2:0> FCLKN and FCLKP buffers # term_dat<2:0> output data buffers # Get the register address and masks rid, mask = adc._getMask('en_lvds_term') val = adc._set(0x0, 0b1, mask) rid, mask = adc._getMask('term_lclk') val = adc._set(val, 0b011, mask) # 0b11 corresponds to 94ohm rid, mask = adc._getMask('term_frame') val = adc._set(val, 0b011, mask) rid, mask = adc._getMask('term_dat') val = adc._set(val, 0b011, mask) # write value into the register adc.write(val, rid) Please find more examples of of usage in adc.HMCAD1511.init() or snapadc.py """ super(HMCAD1511, self).__init__(interface, controller_name) if not isinstance(cs,int): logger.error("Invalid parameter") raise ValueError("Invalid parameter") self.cs = cs & 0xff
# Put some initialization here rather than in __init__ so that instantiate # an HMCAD1511 object wouldn't reset/interrupt the running ADCs.
[docs] def init(self,numChannel=4,clkDivide=1,lowClkFreq=False): """ Reset and initialize ADCs Please see adc.HMCAD1511.setOperatingMode() for more explanations of the parameters """ self.reset() self.powerDown() # Set LVDS bit clock phase if other than default is used self.setOperatingMode(numChannel,clkDivide,lowClkFreq) self.powerUp() self.selectInput([1,2,3,4])
def _bitCtrl(self, state, sda=0): # state: 0 - idle, 1 - start, 2 - transmit, 3 - stop if state == self.STATE_3WIRE_START: cmd = (1 * self.M_ADC_SCL) | (sda * self.M_ADC_SDA) | self.cs self._write(cmd, self.A_WB_W_3WIRE) elif state == self.STATE_3WIRE_TRANS: cmd = (0 * self.M_ADC_SCL) | (sda * self.M_ADC_SDA) | self.cs self._write(cmd, self.A_WB_W_3WIRE) cmd = (1 * self.M_ADC_SCL) | (sda * self.M_ADC_SDA) | self.cs self._write(cmd, self.A_WB_W_3WIRE) elif state == self.STATE_3WIRE_STOP: cmd = (1 * self.M_ADC_SCL) | (sda * self.M_ADC_SDA) | 0x00 self._write(cmd, self.A_WB_W_3WIRE) def _wordCtrl(self, data, length=24): # wishbone data[9:0] <==> SCL, SDA, cs[7:0] self._bitCtrl(state=self.STATE_3WIRE_START) for i in range(length): bit = (data >> (length-i-1)) & 1 self._bitCtrl(sda=bit, state=self.STATE_3WIRE_TRANS) self._bitCtrl(state=self.STATE_3WIRE_STOP)
[docs] def write(self, data, addr): data = data & 0xffff addr = addr & 0xff addr_data = (addr << 16) | data self._wordCtrl(addr_data)
def _set(self, d1, d2, mask=None): # Update some bits of d1 with d2, while keep other bits unchanged if mask: d1 = d1 & ~mask d2 = d2 * (mask & -mask) return d1 | d2 def _getMask(self, name): rid = None for d in self.DICT: if d == None: continue if name in d: rid = self.DICT.index(d) return rid, d.get(name) if rid == None: logger.error("Invalid parameter") raise ValueError("Invalid parameter")
[docs] def test(self, mode='off', _bits_custom1=None, _bits_custom2=None): """ Test ADC LVDS Set LVDS test patterns E.g. test('off') test('en_ramp') Ramp pattern 0-255 test('dual_custom_pat', 0xabcd, 0xdcba) Alternate between two custom patterns test('single_custom_pat', 0xaaaa) Repeat a custom pattern test('pat_deskew') Deskew pattern (10101010) test('pat_sync') Sync pattern (11110000) """ if mode == 'en_ramp': rid, mask = self._getMask('pat_deskew') self.write(self._set(0x0, 0b00, mask), rid) rid, mask = self._getMask(mode) self.write(self._set(0x0, 0b100, mask), rid) elif mode == 'dual_custom_pat': if not isinstance(_bits_custom1, int) or not isinstance(_bits_custom2, int): logger.error("Invalid parameter") raise ValueError("Invalid parameter") rid, mask = self._getMask('pat_deskew') self.write(self._set(0x0, 0b00, mask), rid) rid, mask = self._getMask('bits_custom1') self.write(self._set(0x0, _bits_custom1, mask), rid) rid, mask = self._getMask('bits_custom2') self.write(self._set(0x0, _bits_custom2, mask), rid) rid, mask = self._getMask(mode) self.write(self._set(0x0, 0b010, mask), rid) elif mode == 'single_custom_pat': if not isinstance(_bits_custom1, int): logger.error("Invalid parameter") raise ValueError("Invalid parameter") rid, mask = self._getMask('pat_deskew') self.write(self._set(0x0, 0b00, mask), rid) rid, mask = self._getMask('bits_custom1') self.write(self._set(0x0, _bits_custom1, mask), rid) rid, mask = self._getMask(mode) self.write(self._set(0x0, 0b001, mask), rid) elif mode == 'pat_deskew': rid, mask = self._getMask('en_ramp') self.write(self._set(0x0, 0b000, mask), rid) rid, mask = self._getMask(mode) self.write(self._set(0x0, 0b01, mask), rid) elif mode == 'pat_sync': rid, mask = self._getMask('en_ramp') self.write(self._set(0x0, 0b000, mask), rid) rid, mask = self._getMask(mode) self.write(self._set(0x0, 0b10, mask), rid) elif mode == 'off': rid, mask = self._getMask('en_ramp') self.write(self._set(0x0, 0b000, mask), rid) rid, mask = self._getMask('pat_deskew') self.write(self._set(0x0, 0b00, mask), rid) else: logger.error("Invalid parameter") raise ValueError("Invalid parameter")
# fine gain (x, not dB) FGAIN = 2**-8, 2**-9, 2**-10, 2**-11, 2**-12, 2**-13 # For details please see table 23, 24 and 25 in HMCAD1511 datasheet FGAIN_ORDER = { 4:[0,1,2,3,4,5,6,7], 2:[0,2,1,3,4,6,5,7], 1:[0,2,5,7,3,1,6,4]} # For details please see table 14 in HMCAD1511 datasheet CGAIN_ORDER = { 4:[[0,1],[2,3],[4,5],[6,7]], 2:[[0,1,2,3],[4,5,6,7]], 1:[[0,1,2,3,4,5,6,7]]}
[docs] def cGain(self, gains, cgain_cfg=False, fgain_cfg=False): """ Set the coarse gain of the ADC channels Coarse gain control (parameters in dB). Input gain must be a list of integers. Coarse gain range for HMCAD1511: 0dB ~ 12dB E.g. cGain([1,5,9,12]) # Quad channel mode in dB step cGain([32,50],cgain_cfg=True) # Dual channel mode in x step cGain([10],fgain_cfg=True) # Single channel mode in dB # step, with fine gain enabled Coarse gain options when by default cgain_cfg=False: 0 dB, 1 dB, 2 dB, 3 dB, 4 dB, 5 dB, 6 dB, 7 dB, 8 dB, 9 dB, 10 dB, 11 dB and 12 dB Coarse gain options when cgain_cfg=True: 1x, 1.25x, 2x, 2.5x, 4x, 5x, 8x, 10x, 12.5x, 16x, 20x, 25x, 32x, 50x """ if not isinstance(gains, list): logger.error("Invalid parameter") raise ValueError("Invalid parameter") if len(gains) not in [1,2,4]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if not all(isinstance(e, (int,float)) and e>=0 for e in gains): logger.error("Invalid parameter") raise ValueError("Invalid parameter") if cgain_cfg==False: if not all(e in self.CGAIN_DICT_0.keys() for e in gains): logger.error("Invalid parameter") raise ValueError("Invalid parameter") else: if not all(e in self.CGAIN_DICT_1.keys() for e in gains): logger.error("Invalid parameter") raise ValueError("Invalid parameter") # By default, coarse gain in dB step, fine gain disabled rid, mask = self._getMask('cgain_cfg') val = self._set(0x0, cgain_cfg, mask) rid, mask = self._getMask('fine_gain_en') val = self._set(val, fgain_cfg, mask) self.write(val, rid) if cgain_cfg==False: vals = [self.CGAIN_DICT_0[gain] for gain in gains] else: vals = [self.CGAIN_DICT_1[gain] for gain in gains] if len(vals)==4: rid, mask = self._getMask('cgain4_ch1') val = self._set(0x0, vals[0], mask) rid, mask = self._getMask('cgain4_ch2') val = self._set(val, vals[1], mask) rid, mask = self._getMask('cgain4_ch3') val = self._set(val, vals[2], mask) rid, mask = self._getMask('cgain4_ch4') val = self._set(val, vals[3], mask) self.write(val, rid) elif len(vals)==2: rid, mask = self._getMask('cgain2_ch1') val = self._set(0x0, vals[0], mask) rid, mask = self._getMask('cgain2_ch1') val = self._set(val, vals[1], mask) self.write(val, rid) else: rid, mask = self._getMask('cgain1_ch1') val = self._set(0x0, vals[0], mask) self.write(val, rid)
[docs] def fGain(self, gains, numChannel=1): """ Set the fine gain of the 8 ADC cores Fine gain control (parameters in dB), input gain rounded towards 0 dB Fine gain range for HMCAD1511: -0.0670dB ~ 0.0665dB E.g. fGain([-0.06, -0.04, -0.02, 0, 0, 0.02, 0.04, 0.06]) """ if not isinstance(gains, list): logger.error("Invalid parameter") raise ValueError("Invalid parameter") if not all(isinstance(e, float) for e in gains): logger.error("Invalid parameter") raise ValueError("Invalid parameter") if not len(gains) == 8: logger.error("Invalid parameter") raise ValueError("Invalid parameter") maxdB = 20*math.log(1+sum(self.FGAIN),10) mindB = 20*math.log(1-sum(self.FGAIN),10) if not all(e > maxdB for e in gains): logger.error("Invalid parameter") raise ValueError("Fine gain cannot be bigger than %d dB" % maxdB) if not all(e < mindB for e in gains): logger.error("Invalid parameter") raise ValueError("Fine gain cannot be smaller than %d dB" % mindB) cfgs = [self._calFGainCfg(g) for g in gains] cfgs = [cfgs[i] for i in self.FGAIN_ORDER[numChannel]] rid, mask = self._getMask('fgain_branch1') val = self._set(0x0, cfgs[0], mask) rid, mask = self._getMask('fgain_branch2') val = self._set(val, cfgs[1], mask) self.write(val, rid) rid, mask = self._getMask('fgain_branch3') val = self._set(0x0, cfgs[2], mask) rid, mask = self._getMask('fgain_branch4') val = self._set(val, cfgs[3], mask) self.write(val, rid) rid, mask = self._getMask('fgain_branch5') val = self._set(0x0, cfgs[4], mask) rid, mask = self._getMask('fgain_branch6') val = self._set(val, cfgs[5], mask) self.write(val, rid) rid, mask = self._getMask('fgain_branch7') val = self._set(0x0, cfgs[6], mask) rid, mask = self._getMask('fgain_branch8') val = self._set(val, cfgs[7], mask) self.write(val, rid)
def _calFGainCfg(self, gain): x = np.float32(1+abs((10**(gain/20.))-1)) unpacked = struct.unpack('!I',struct.pack('!f',x))[0] cfg = (unpacked & 0xfc00) >> 10 if gain < 0: cfg = cfg + (1 << 6) return cfg
[docs] def setOperatingMode(self, numChannel, clkDivide=1, lowClkFreq=False): """ Set interleaving mode and clock divide factor Available Interleaving mode numChannel=1 -- 8 ADC cores per channel numChannel=2 -- 4 ADC cores per channel numChannel=4 -- 2 ADC cores per channel Activate lowClkFreq when Single channel Fs < 240 MHz Dual channel Fs < 120 MHz Quad channel Fs < 60 MHz Availale clock divide factors: 1, 2, 4, and 8 E.g. setOperatingMode(1) setOperatingMode(4, 4) """ if not numChannel in [1,2,4]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if not clkDivide in [1,2,4,8]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") self.powerDown() rid, mask = self._getMask('channel_num') val = self._set(0x0, numChannel, mask) rid, mask = self._getMask('clk_divide') val = self._set(val, int(math.log(clkDivide,2)), mask) self.write(val, rid) rid, mask = self._getMask('low_clk_freq') val = self._set(0x0, lowClkFreq, mask) self.write(val, rid) self.powerUp()
[docs] def interleave(self, data, numChannel): """ Reshape and return ADC data """ if numChannel not in [1,2,4]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if not isinstance(data,np.ndarray): logger.error("Invalid parameter") raise ValueError("Invalid parameter") if data.ndim != 2 or data.shape[1]!=8: logger.error("Invalid parameter") raise ValueError("Invalid parameter") data = data.reshape(-1,numChannel,8/numChannel) data = np.einsum("ijk->jik", data) data = data.reshape(numChannel,-1) data = np.einsum("ij->ji", data) return data
[docs] def selectInput(self, inputs): """ Input select E.g. selectInput([1,2,3,4]) (in four channel mode) selectInput([1,1,1,1]) (in one channel mode) """ opts = [1, 2, 3, 4] if not all(i in opts for i in inputs): logger.error("Invalid parameter") raise ValueError("Invalid parameter") rid, mask = self._getMask('inp_sel_adc1') val = self._set(0x0, 1<<inputs[0], mask) rid, mask = self._getMask('inp_sel_adc2') val = self._set(val, 1<<inputs[1], mask) self.write(val, rid) rid, mask = self._getMask('inp_sel_adc3') val = self._set(0x0, 1<<inputs[2], mask) rid, mask = self._getMask('inp_sel_adc4') val = self._set(val, 1<<inputs[3], mask) self.write(val, rid)
[docs] def reset(self): rid, mask = self._getMask('rst') val = self._set(0x0, 1, mask) self.write(val, rid)
# Power up and down # PD pins of the ADC chips are directly grounded
[docs] def powerUp(self): rid, mask = self._getMask('pd') val = self._set(0x0, 0, mask) self.write(val, rid)
[docs] def powerDown(self): rid, mask = self._getMask('pd') val = self._set(0x0, 1, mask) self.write(val, rid)
[docs]class HMCAD1520(HMCAD1511): """ HMCAD1520 High Speed Multi-Mode 8/12/14-Bit 1000/640/105 MSPS A/D Converter Please see docstring of HMCAD1511 for brief description """
[docs] def __init__(self, interface, controller_name, cs=0xff): super(HMCAD1520, self).__init__(interface, controller_name, cs) self.DICT[0x26] = { 'bits_custom1' : 0xffff << 0, } self.DICT[0x27] = { 'bits_custom2' : 0xffff << 0, } self.DICT[0x31] = { 'high_speed_mode' : 0b111 << 0, 'precision_mode' : 0b1 << 3, 'clk_divide' : 0b11 << 8, } self.DICT[0x53] = { 'low_clk_freq' : 0b1 << 3, 'lvds_output_mode' : 0b111 << 0, 'lvds_advance' : 0b1 << 4, 'lvds_delay' : 0b1 << 5, }
[docs] def init(self,numChannel=4,clkDivide=1,lowClkFreq=False,resolution=12): """ Reset and initialize ADCs """ self.reset() self.powerDown() # Set LVDS bit clock phase if other than default is used self.setOperatingMode(numChannel, clkDivide, lowClkFreq, resolution) self.powerUp() self.selectInput([1,2,3,4])
[docs] def setOperatingMode(self, numChannel, clkDivide=1, lowClkFreq=False, resolution=12): """ Set operating mode and clock divide factor Available operating mode numChannel=1 Single channel 12-bit numChannel=2 Dual channel 12-bit numChannel=4 Quad channel 12-bit numChannel=0 Quad channel 14-bit (not supported yet) Available resolutions: resolution=8 resolution=12 resolution=14 (not supported yet) Availale clock divide factors: 1, 2, 4, and 8 Activate lowClkFreq when High speed, single channel Fs < 240 MHz High speed, dual channel Fs < 120 MHz High speed, quad channel Fs < 60 MHz Precision mode Fs < 30 MHz E.g. setOperatingMode(1, 4, False, 8) # 1 channel, 8-bit resolution, 8-bit width setOperatingMode(1, 4, False, 12) # 1 channel, 12-bit resolution, 12-bit width setOperatingMode(4, 1, False, 14) # 4 channels, 14-bit resolution, 16-bit width. (Currently not supported) """ if numChannel not in [0,1,2,4]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if clkDivide not in [1,2,4,8]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if lowClkFreq not in [True,False]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") if resolution not in [8,12,14]: logger.error("Invalid parameter") raise ValueError("Invalid parameter") self.powerDown() if resolution==8: width=0b000 # width = 8 elif resolution==12: width=0b001 # width = 12 elif resolution==14: width=0b011 # width = 16 rid, mask = self._getMask('lvds_output_mode') val = self._set(0x0, width, mask) rid, mask = self._getMask('low_clk_freq') val = self._set(val, lowClkFreq, mask) self.write(val, rid) rid, mask = self._getMask('high_speed_mode') val = self._set(0x0, numChannel, mask) rid, mask = self._getMask('precision_mode') val = self._set(val, resolution==14, mask) rid, mask = self._getMask('clk_divide') val = self._set(val, int(math.log(clkDivide,2)), mask) self.write(val, rid) self.powerUp()